scispace - formally typeset
Search or ask a question
Author

Vito Latora

Bio: Vito Latora is an academic researcher from Queen Mary University of London. The author has contributed to research in topics: Complex network & Centrality. The author has an hindex of 78, co-authored 332 publications receiving 35697 citations. Previous affiliations of Vito Latora include University of Catania & University of Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper applies the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web and shows that the algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem.
Abstract: We have recently introduced an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

6 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce a model for the dynamics of service adoption on a two-layer multiplex network: the layer of social interactions among customers and the power-grid layer connecting the households.
Abstract: Due to the emergence of new technologies, the whole electricity system is undergoing transformations on a scale and pace never observed before. The decentralization of energy resources and the smart grid have forced utility services to rethink their relationships with customers. Demand response (DR) seeks to adjust the demand for power instead of adjusting the supply. However, DR business models rely on customer participation and can only be effective when large numbers of customers in close geographic vicinity, e.g., connected to the same transformer, opt in. Here, we introduce a model for the dynamics of service adoption on a two-layer multiplex network: the layer of social interactions among customers and the power-grid layer connecting the households. While the adoption process - based on peer-to-peer communication - runs on the social layer, the time-dependent recovery rate of the nodes depends on the states of their neighbors on the power-grid layer, making an infected node surrounded by infectious ones less keen to recover. Numerical simulations of the model on synthetic and real-world networks show that a strong local influence of the customers' actions leads to a discontinuous transition where either none or all the nodes in the network are infected, depending on the infection rate and social pressure to adopt. We find that clusters of early adopters act as points of high local pressure, helping maintaining adopters, and facilitating the eventual adoption of all nodes. This suggests direct marketing strategies on how to efficiently establish and maintain new technologies such as DR schemes.

6 citations

Journal ArticleDOI
TL;DR: It is pointed out that a strong interplay between network growth and disease spreading produces networks with degree–degree correlations and nontrivial clustering patterns.
Abstract: We study the evolution of an adaptive network whose growth occurs simultaneously to the propagation of a disease. The dynamics of the network growth is entangled to the spread of the disease, since the probability for a node in the network to get new links depends on its healthy or infected state. We analyze the influence that such coupling mechanism has both on the diffusion of the disease and on the structure of the growing networks. Our results point out that a strong interplay between network growth and disease spreading produces networks with degree–degree correlations and nontrivial clustering patterns.

6 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators, was proposed.
Abstract: We have recently introduced [Phys. Rev. E 75, 045102(R) (2007); AIP Conference Proceedings 965, 2007, p. 323] an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

6 citations

Posted Content
05 Jun 2006
TL;DR: In this article, a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences was performed and it was shown that when criticality appears the Probability Density Functions (PDFs) for the avalanche size difference at different times have fat tails with a q-Gaussian shape.
Abstract: We perform a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears the Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behaviour does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.

6 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the algorithms proposed are highly effective at discovering community structure in both computer-generated and real-world network data, and can be used to shed light on the sometimes dauntingly complex structure of networked systems.
Abstract: We propose and study a set of algorithms for discovering community structure in networks-natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using any one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.

12,882 citations