scispace - formally typeset
Search or ask a question
Author

Vitorino Ramos

Bio: Vitorino Ramos is an academic researcher from Technical University of Lisbon. The author has contributed to research in topics: Swarm intelligence & Swarm behaviour. The author has an hindex of 21, co-authored 55 publications receiving 1437 citations. Previous affiliations of Vitorino Ramos include University of Lisbon & Instituto Superior Técnico.


Papers
More filters
Proceedings ArticleDOI
08 Dec 2003
TL;DR: An ant clustering algorithm to discover Web usage patterns (data clusters) and a linear genetic programming approach to analyze the visitor trends are proposed and empirical results clearly show that ant colony clustering performs well when compared to a self-organizing map.
Abstract: The rapid e-commerce growth has made both business community and customers face a new situation. Due to intense competition on the one hand and the customer's option to choose from several alternatives, the business community has realized the necessity of intelligent marketing strategies and relationship management. Web usage mining attempts to discover useful knowledge from the secondary data obtained from the interactions of the users with the Web. Web usage mining has become very critical for effective Web site management, creating adaptive Web sites, business and support services, personalization, network traffic flow analysis and so on. The study of ant colonies behavior and their self-organizing capabilities is of interest to knowledge retrieval/management and decision support systems sciences, because it provides models of distributed adaptive organization, which are useful to solve difficult optimization, classification, and distributed control problems, among others [Ramos, V. et al. (2002), (2000)]. In this paper, we propose an ant clustering algorithm to discover Web usage patterns (data clusters) and a linear genetic programming approach to analyze the visitor trends. Empirical results clearly show that ant colony clustering performs well when compared to a self-organizing map (for clustering Web usage patterns) even though the performance accuracy is not that efficient when compared to evolutionary-fuzzy clustering (i-miner) [Abraham, A. (2003)] approach.

152 citations

Posted Content
TL;DR: An extended model is presented in order to deal with digital image habitats, in which artificial ants could be able to react to the environment and perceive it, and inspired by the work of Chialvo and Millonas.
Abstract: Some recent studies have pointed that, the self-organization of neurons into brain-like structures, and the self-organization of ants into a swarm are similar in many respects. If possible to implement, these features could lead to important developments in pattern recognition systems, where perceptive capabilities can emerge and evolve from the interaction of many simple local rules. The principle of the method is inspired by the work of Chialvo and Millonas who developed the first numerical simulation in which swarm cognitive map formation could be explained. From this point, an extended model is presented in order to deal with digital image habitats, in which artificial ants could be able to react to the environment and perceive it. Evolution of pheromone fields point that artificial ant colonies could react and adapt appropriately to any type of digital habitat. KEYWORDS: Swarm Intelligence, Self-Organization, Stigmergy, Artificial Ant Systems, Pattern Recognition and Perception, Image Segmentation, Gestalt Perception Theory, Distributed Computation.

148 citations

Posted Content
TL;DR: The present ant clustering system (ACLUSTER) avoids not only short-term memory based strategies, as well as the use of several artificial ant types, present in some recent approaches, and is also the first application of ant systems into textual document clustering.
Abstract: Social insect societies and more specifically ant colonies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization As a result of this organization, ant colonies can accomplish complex tasks that in some cases exceed the individual capabilities of a single ant The study of ant colonies behavior and of their self-organizing capabilities is of interest to knowledge retrieval/management and decision support systems sciences, because it provides models of distributed adaptive organization which are useful to solve difficult optimization, classification, and distributed control problems, among others In the present work we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we present a novel strategy to tackle unsupervised clustering as well as data retrieval problems The present ant clustering system (ACLUSTER) avoids not only short-term memory based strategies, as well as the use of several artificial ant types (using different speeds), present in some recent approaches Moreover and according to our knowledge, this is also the first application of ant systems into textual document clustering KEYWORDS: Swarm Intelligence, Ant Systems, Unsupervised Clustering, Data Retrieval, Data Mining, Distributed Computing, Document Maps, Textual Document Clustering

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2007
TL;DR: An attempt has been made to review the existing theory, methods, recent developments and scopes of Support Vector Regression.
Abstract: Instead of minimizing the observed training error, Support Vector Regression (SVR) attempts to minimize the generalization error bound so as to achieve generalized performance. The idea of SVR is based on the computation of a linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function. SVR has been applied in various fields - time series and financial (noisy and risky) prediction, approximation of complex engineering analyses, convex quadratic programming and choices of loss functions, etc. In this paper, an attempt has been made to review the existing theory, methods, recent developments and scopes of SVR.

1,467 citations

Journal Article
TL;DR: The author wished to relate the three phases of research on insects and to express insect sociology as population biology in this detailed survey of knowledge of insect societies.
Abstract: In his introduction to this detailed survey of knowledge of insect societies, the author points out that research on insect sociology has proceeded in three phases, the natural history phase, the physiological phase and the population-biology phase. Advances in the first two phases have permitted embarkation in the third phase on a more rigorous theory of social evolution based on population genetics and writing this book, the author wished to relate the three phases of research on insects and to express insect sociology as population biology. A glossary of terms, a considerable bibliography and a general index are included. Other CABI sites 

1,394 citations

Journal ArticleDOI
TL;DR: This chapter reviews 55 related studies in the period between 2000 and 2007 focusing on developing single, hybrid, and ensemble classifiers and discusses current achievements and limitations in developing intrusion detection systems by machine learning.
Abstract: The popularity of using Internet contains some risks of network attacks. Intrusion detection is one major research problem in network security, whose aim is to identify unusual access or attacks to secure internal networks. In literature, intrusion detection systems have been approached by various machine learning techniques. However, there is no a review paper to examine and understand the current status of using machine learning techniques to solve the intrusion detection problems. This chapter reviews 55 related studies in the period between 2000 and 2007 focusing on developing single, hybrid, and ensemble classifiers. Related studies are compared by their classifier design, datasets used, and other experimental setups. Current achievements and limitations in developing intrusion detection systems by machine learning are present and discussed. A number of future research directions are also provided.

872 citations

Journal ArticleDOI
01 Jan 2010
TL;DR: An overview of the research progress in applying CI methods to the problem of intrusion detection is provided, including core methods of CI, including artificial neural networks, fuzzy systems, evolutionary computation, artificial immune systems, swarm intelligence, and soft computing.
Abstract: Intrusion detection based upon computational intelligence is currently attracting considerable interest from the research community. Characteristics of computational intelligence (CI) systems, such as adaptation, fault tolerance, high computational speed and error resilience in the face of noisy information, fit the requirements of building a good intrusion detection model. Here we want to provide an overview of the research progress in applying CI methods to the problem of intrusion detection. The scope of this review will encompass core methods of CI, including artificial neural networks, fuzzy systems, evolutionary computation, artificial immune systems, swarm intelligence, and soft computing. The research contributions in each field are systematically summarized and compared, allowing us to clearly define existing research challenges, and to highlight promising new research directions. The findings of this review should provide useful insights into the current IDS literature and be a good source for anyone who is interested in the application of CI approaches to IDSs or related fields.

700 citations