scispace - formally typeset
Search or ask a question
Author

Vivek Kumar Singh

Bio: Vivek Kumar Singh is an academic researcher from Sejong University. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 5, co-authored 5 publications receiving 531 citations.

Papers
More filters
Journal ArticleDOI
01 May 2012-Carbon
TL;DR: In this paper, reduced graphene oxide (RGO) with a layered and porous structure was synthesized by thermal exfoliation of graphite oxide using Fourier transform infrared and Raman spectroscopies, X-ray diffraction and scanning electron microscopy.

383 citations

Journal ArticleDOI
TL;DR: In this paper, a single step method was developed for the preparation of graphene oxide/Fe2O3 composites by exfoliation of graphite oxide with an oxygen-rich ferric acetyl acetonate complex.

124 citations

Journal ArticleDOI
TL;DR: In this article, the modification of the electronic properties of single layer CVD-grown graphene by molecular doping without degrading its transparency and electrical properties was reported, where the shift of G and 2D peak wave numbers and the intensity ratio of D and G peaks were analyzed as a function of reaction time.
Abstract: It is essential to tailor the electronic properties of graphene in order to apply graphene films for use in electrodes. Here we report the modification of the electronic properties of single layer chemical vapor deposition (CVD) grown graphene by molecular doping without degrading its transparency and electrical properties. Raman spectroscopy and transport measurements revealed that p-toluenesulfonic acid (PTSA) imposes n-doping on single layer CVD grown graphene. The shift of G and 2D peak wave numbers and the intensity ratio of D and G peaks are analyzed as a function of reaction time. In the gate voltage dependent resistivity measurement, it is found that the maximum resistivity corresponding to the Dirac point is shifted toward a more negative gate voltage with increasing reaction time, indicating an n-type doping effect. We have also made single layer graphene p–n junctions by chemical doping and investigated the current–voltage characteristics at the p–n junction.

60 citations

Journal ArticleDOI
TL;DR: This study demonstrates that chemical modification is a simple approach to tailor the electrical properties of single-, bi-, and trilayer graphenes, while maintaining the important electrical assets.
Abstract: It is an essential issue in graphene-based nanoelectronic and optoelectronic devices to tune the electrical properties of graphene layers, while preserving its unique band structure. Here, we report the tuning of electronic properties of single-, bi-, and trilayer mechanically exfoliated graphenes by p-toluenesulfonic acid (PTSA) molecular doping. Raman spectroscopy and charge transport measurements revealed that PTSA molecule imposes n-doping to single-, bi-, and trilayer graphenes. The shift of G and 2D peak frequencies and intensity ratio of single-, bi-, and trilayer graphenes are analyzed as a function of reaction time. The Dirac point is also analyzed as a function of reaction time indicates the n-type doping effect for all single-, bi-, and trilayer graphenes. Our study demonstrates that chemical modification is a simple approach to tailor the electrical properties of single-, bi-, and trilayer graphenes, while maintaining the important electrical assets.

30 citations


Cited by
More filters
Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Abstract: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.

1,533 citations

Journal ArticleDOI
TL;DR: Graphene is one of the most promising materials in nanotechnology and from a theoretical point of view, it provides the ultimate two-dimensional model of a catalytic support as mentioned in this paper, and some promising results have already been obtained with few-layer graphene.

842 citations

Journal ArticleDOI
TL;DR: Graphene has a unique atom-thick two-dimensional (2D) structure, high conductivity and charge mobility, huge specific surface area, excellent mechanical, thermal and electrical properties.
Abstract: Graphene has a unique atom-thick two-dimensional (2D) structure, high conductivity and charge mobility, huge specific surface area, excellent mechanical, thermal and electrical properties. Thus, it has been regarded as an important component for functional materials, especially for developing a variety of catalysts. In this review, we summarize the recent advancements in synthesizing graphene based new catalysts, and their applications in organic synthesis, sensors, environmental protection and energy related systems.

685 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported a facile solvothermal route to synthesize laminated magnetic graphene and showed that there have significant changes in the electromagnetic properties of magnetic graphene when compared with pure graphene.
Abstract: Graphene is highly desirable as an electromagnetic wave absorber because of its high dielectric loss and low density. Nevertheless, pure graphene is found to be non-magnetic and contributes to microwave energy absorption mostly because of its dielectric loss, and the electromagnetic parameters of pure graphene, which are out of balance, result in a bad impedance matching characteristic. In this paper, we report a facile solvothermal route to synthesize laminated magnetic graphene. The results show that there have been significant changes in the electromagnetic properties of magnetic graphene when compared with pure graphene. Especially the dielectric Cole–Cole semicircle suggests that there are Debye relaxation processes in the laminated magnetic graphene, which prove beneficial to enhance the dielectric loss. We also proposed an electromagnetic complementary theory to explain how laminated magnetic graphene, with the combined advantages of graphene and magnetic particles, helps to improve the standard of impedance matching for electromagnetic wave absorbing materials. Besides, microwave absorption properties indicate that the reflection loss of the as-prepared composite is below −10 dB (90% absorption) at 10.4–13.2 GHz with a coating layer thickness of 2.0 mm. This further confirms that the nanoscale surface modification of magnetic particles on graphene makes graphene-based composites have a certain research value in electromagnetic wave absorption.

663 citations