scispace - formally typeset
Search or ask a question
Author

Vivek Narasayya

Other affiliations: University of Washington
Bio: Vivek Narasayya is an academic researcher from Microsoft. The author has contributed to research in topics: Query optimization & Database design. The author has an hindex of 49, co-authored 173 publications receiving 9634 citations. Previous affiliations of Vivek Narasayya include University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: BI technologies are essential to running today's businesses and this technology is going through sea changes, so how do you protect yourself against these changes?
Abstract: BI technologies are essential to running today's businesses and this technology is going through sea changes.

830 citations

Proceedings Article
10 Sep 2000
TL;DR: This paper presents an end-to-end solution to the problem of selecting materialized views and indexes for SQL databases, and describes results of extensive experimental evaluation that demonstrate the effectiveness of the techniques.
Abstract: Automatically selecting an appropriate set of materialized views and indexes for SQL databases is a non-trivial task. A judicious choice must be cost-driven and influenced by the workload experienced by the system. Although there has been work in materialized view selection in the context of multidimensional (OLAP) databases, no past work has looked at the problem of building an industry-strength tool for automated selection of materialized views and indexes for SQL workloads. In this paper, we present an end-to-end solution to the problem of selecting materialized views and indexes. We describe results of extensive experimental evaluation that demonstrate the effectiveness of our techniques. Our solution is implemented as part of a tuning wizard that ships with Microsoft SQL Server 2000.

690 citations

Proceedings Article
25 Aug 1997
TL;DR: Novel techniques that make it possible to build an industrial-strength tool for automating the choice of indexes in the physical design of a SQL database, and an iterative approach to handle the complexity arising from multicolumn indexes are described.
Abstract: In this paper we describe novel techniques that make it possible to build an industrial-strength tool for automating the choice of indexes in the physical design of a SQL database. The tool takes as input a workload of SQL queries, and suggests a set of suitable indexes. We ensure that the indexes chosen are effective in reducing the cost of the workload by keeping the index selection tool and the query optimizer "in step". The number of index sets that must be evaluated to find the optimal configuration is very large. We reduce the complexity of this problem using three techniques. First, we remove a large number of spurious indexes from consideration by taking into account both query syntax and cost information. Second, we introduce optimizations that make it possible to cheaply evaluate the “goodness” of an index set. Third, we describe an iterative approach to handle the complexity arising from multicolumn indexes. The tool has been implemented on Microsoft SQL Server 7.0. We performed extensive experiments over a range of workloads, including TPC-D. The results indicate that the tool is efficient and its choices are close to optimal.

454 citations

Proceedings ArticleDOI
13 Jun 2004
TL;DR: This paper presents novel techniques for designing a scalable solution to this integrated physical design problem that takes both performance and manageability into account and implements it on Microsoft SQL Server.
Abstract: In addition to indexes and materialized views, horizontal and vertical partitioning are important aspects of physical design in a relational database system that significantly impact performance. Horizontal partitioning also provides manageability; database administrators often require indexes and their underlying tables partitioned identically so as to make common operations such as backup/restore easier. While partitioning is important, incorporating partitioning makes the problem of automating physical design much harder since: (a) The choices of partitioning can strongly interact with choices of indexes and materialized views. (b) A large new space of physical design alternatives must be considered. (c) Manageability requirements impose a new constraint on the problem. In this paper, we present novel techniques for designing a scalable solution to this integrated physical design problem that takes both performance and manageability into account. We have implemented our techniques and evaluated it on Microsoft SQL Server. Our experiments highlight: (a) the importance of taking an integrated approach to automated physical design and (b) the scalability of our techniques.

447 citations

Journal ArticleDOI
01 Jun 1999
TL;DR: A detailed study of the inefficiency of sampling the output of a query, based on new insights into the interaction between join and sampling, and develops join sampling techniques for the settings where negative results do not apply.
Abstract: A major bottleneck in implementing sampling as a primitive relational operation is the inefficiency of sampling the output of a query. It is not even known whether it is possible to generate a sample of a join tree without first evaluating the join tree completely. We undertake a detailed study of this problem and attempt to analyze it in a variety of settings. We present theoretical results explaining the difficulty of this problem and setting limits on the efficiency that can be achieved. Based on new insights into the interaction between join and sampling, we develop join sampling techniques for the settings where our negative results do not apply. Our new sampling algorithms are significantly more efficient than those known earlier. We present experimental evaluation of our techniques on Microsoft's SQL Server 7.0.

370 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: This introduction to the MIS Quarterly Special Issue on Business Intelligence Research first provides a framework that identifies the evolution, applications, and emerging research areas of BI&A, and introduces and characterized the six articles that comprise this special issue in terms of the proposed BI &A research framework.
Abstract: Business intelligence and analytics (BI&A) has emerged as an important area of study for both practitioners and researchers, reflecting the magnitude and impact of data-related problems to be solved in contemporary business organizations. This introduction to the MIS Quarterly Special Issue on Business Intelligence Research first provides a framework that identifies the evolution, applications, and emerging research areas of BI&A. BI&A 1.0, BI&A 2.0, and BI&A 3.0 are defined and described in terms of their key characteristics and capabilities. Current research in BI&A is analyzed and challenges and opportunities associated with BI&A research and education are identified. We also report a bibliometric study of critical BI&A publications, researchers, and research topics based on more than a decade of related academic and industry publications. Finally, the six articles that comprise this special issue are introduced and characterized in terms of the proposed BI&A research framework.

4,610 citations

Proceedings Article
07 Sep 1999
TL;DR: Experimental results indicate that the novel scheme for approximate similarity search based on hashing scales well even for a relatively large number of dimensions, and provides experimental evidence that the method gives improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition.
Abstract: The nearestor near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image databases, document collections, time-series databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality." That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in k-d trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than brute-force linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points Supported by NAVY N00014-96-1-1221 grant and NSF Grant IIS-9811904. Supported by Stanford Graduate Fellowship and NSF NYI Award CCR-9357849. Supported by ARO MURI Grant DAAH04-96-1-0007, NSF Grant IIS-9811904, and NSF Young Investigator Award CCR9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment. Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999. from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. We provide experimental evidence that our method gives signi cant improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition. Experimental results also indicate that our scheme scales well even for a relatively large number of dimensions (more than 50).

3,705 citations

Journal ArticleDOI
12 Nov 2000
TL;DR: OceanStore monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data.
Abstract: OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data. A prototype implementation is currently under development.

3,376 citations