scispace - formally typeset
Search or ask a question
Author

Vlad Stolojan

Bio: Vlad Stolojan is an academic researcher from University of Surrey. The author has contributed to research in topics: Carbon nanotube & Amorphous carbon. The author has an hindex of 27, co-authored 139 publications receiving 3247 citations. Previous affiliations of Vlad Stolojan include University of Cambridge & University of Sussex.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an interband effective electron mass was defined for carbon systems, where the mass density was derived from the valence electron density via the plasmon energy, which is measured by electron energy-loss spectroscopy (EELS).
Abstract: Grazing-angle x-ray reflectivity (XRR) is described as an efficient, nondestructive, parameter-free means to measure the mass density of various types of amorphous carbon films down to the nanometer thickness range. It is shown how XRR can also detect layering if it is present in the films, in which case the reflectivity profile must be modeled to derive the density. The mass density can also be derived from the valence electron density via the plasmon energy, which is measured by electron energy-loss spectroscopy (EELS). We formally define an interband effective electron mass ${m}^{*},$ which accounts for the finite band gap. Comparison of XRR and EELS densities allows us to fit an average ${m}^{*}=0.87m$ for carbon systems, m being the free-electron mass. We show that, within the Drude-Lorentz model of the optical spectrum, ${m}^{*}=[1\ensuremath{-}{n(0)}^{\ensuremath{-}2}]m,$ where $n(0)$ is the refractive index at zero optical frequency. The fraction of ${\mathrm{sp}}^{2}$ bonding is derived from the carbon K-edge EELS spectrum, and it is shown how a choice of ``magic'' incidence and collection angles in the scanning transmission electron microscope can give ${\mathrm{sp}}^{2}$ fraction values that are independent of sample orientation or anisotropy. We thus give a general relationship between mass density and ${\mathrm{sp}}^{3}$ content for carbon films.

511 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out.
Abstract: A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600–700 °C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100 °C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material.

394 citations

Journal ArticleDOI
TL;DR: In this article, the Ni catalyst has a surface layer rich in carbon, consistent with the formation of a eutectic Ni-C droplet as a nucleation site for the carbon nanofibres, so that the carbon diffuses across the surface.
Abstract: Carbon nanotubes, first identified by Iijima1, require for their production a source of elemental carbon and a transfer of energy that is specific to the type of source and the growth environment. Methods developed so far involve arc discharge2, and vaporization using laser3,4, pyrolysis5,6 and chemical vapour deposition of hydrocarbons7. Here, we show growth of carbon nanofibres from radio-frequency plasma-enhanced chemical vapour deposition at room temperature, which was made possible by substituting the thermal energy requirements for the growth with plasma decomposition of methane on the Ni catalyst. Electron microscopy analysis provides evidence for a 'tip' growth model8, with the Ni catalyst particle attached to the tip of the nanofibre. Energy-filtered imaging shows the Ni catalyst has a surface layer rich in carbon, consistent with the formation of a eutectic Ni–C droplet as a nucleation site for the carbon nanofibres9, so that the carbon diffuses across the surface. The reduced distortion of the catalyst particles at low temperatures leads to a more uniform growth of the carbon nanofibres over large areas. The lower growth temperature allows for the removal of the silicon dioxide barrier layer associated with catalytic growth, and should allow in situ growth of nanofibres on relatively large areas of temperature-sensitive substrates, such as plastics, organics and even paper.

212 citations

Journal ArticleDOI
22 Jan 2013-ACS Nano
TL;DR: Dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.
Abstract: Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material...

110 citations

Journal ArticleDOI
18 Apr 2007-Langmuir
TL;DR: The potential utility of this hybrid material is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction.
Abstract: We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is ...

100 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
29 Jan 2004-Nature
TL;DR: Time-resolved, high-resolution in situ transmission electron microscope observations of the formation of carbon nanofibres from methane decomposition over supported nickel nanocrystals show that metallic step edges act as spatiotemporal dynamic growth sites and may be important for understanding other types of catalytic reactions and nanomaterial syntheses.
Abstract: The synthesis of carbon nanotubes with predefined structure and functionality plays a central role in the field of nanotechnology1,2, whereas the inhibition of carbon growth is needed to prevent a breakdown of industrial catalysts for hydrogen and synthesis gas production3. The growth of carbon nanotubes and nanofibres has therefore been widely studied4,5,6,7,8,9,10. Recent advances in in situ techniques now open up the possibility of studying gas–solid interactions at the atomic level11,12. Here we present time-resolved, high-resolution in situ transmission electron microscope observations of the formation of carbon nanofibres from methane decomposition over supported nickel nanocrystals. Carbon nanofibres are observed to develop through a reaction-induced reshaping of the nickel nanocrystals. Specifically, the nucleation and growth of graphene layers are found to be assisted by a dynamic formation and restructuring of mono-atomic step edges at the nickel surface. Density-functional theory calculations indicate that the observations are consistent with a growth mechanism involving surface diffusion of carbon and nickel atoms. The finding that metallic step edges act as spatiotemporal dynamic growth sites may be important for understanding other types of catalytic reactions and nanomaterial syntheses.

1,357 citations

Journal ArticleDOI
TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Abstract: This review discusses how low-energy, valence excitations created by swift electrons can render information on the optical response of structured materials with unmatched spatial resolution. Electron microscopes are capable of focusing electron beams on sub-nanometer spots and probing the target response either by analyzing electron energy losses or by detecting emitted radiation. Theoretical frameworks suited to calculate the probability of energy loss and light emission (cathodoluminescence) are revisited and compared with experimental results. More precisely, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems. We assess the conditions under which classical and quantum-mechanical formulations are equivalent. The excitation of collective modes such as plasmons is studied in bulk materials, planar surfaces, and nanoparticles. Light emission induced by the electrons is shown to constitute an excellent probe of plasmons, combining sub-nanometer resolution in the position of the electron beam with nanometer resolution in the emitted wavelength. Both electron energy-loss and cathodoluminescence spectroscopies performed in a scanning mode of operation yield snap shots of plasmon modes in nanostructures with fine spatial detail as compared to other existing imaging techniques, thus providing an ideal tool for nanophotonics studies.

1,288 citations