scispace - formally typeset
Search or ask a question
Author

Vladimir A. Rakov

Bio: Vladimir A. Rakov is an academic researcher from University of Florida. The author has contributed to research in topics: Lightning & Lightning strike. The author has an hindex of 67, co-authored 459 publications receiving 14918 citations. Previous affiliations of Vladimir A. Rakov include Amirkabir University of Technology & Rzeszów University of Technology.


Papers
More filters
Book
28 Jun 2010
TL;DR: In this paper, the authors present a model of lightning and its effects in the atmosphere and the distant lightning electromagnetic environment: atmospherics, Schumann resonances and whistlers.
Abstract: Preface 1. Introduction 2. Incidence of lightning 3. Electrical structure of lightning-producing clouds 4. Downward negative lightning discharges to ground 5. Positive and bipolar lightning discharges to ground 6. Upward lightning initiated by ground-based objects 7. Artificial initiation (triggering) of lightning by ground-based activity 8. Winter lightning in Japan 9. Cloud discharges 10. Lightning and airborne vehicles 11. Thunder 12. Modelling of lightning processes 13. The distant lightning electromagnetic environment: atmospherics, Schumann resonances and whistlers 14. Lightning effects in the middle and upper atmosphere 15. Lightning effects on the chemistry of the atmosphere 16. Extraterrestrial lightning 17. Lightning locating systems 18. Deleterious effects of lightning and protective techniques 19. Lightning hazards to humans and animals 20. Ball lightning, bead lightning, and other unusual discharges Appendix. books on lightning and related subjects Subjects Index.

1,715 citations

Journal ArticleDOI
TL;DR: Several aspects of the calculation of lightning electric and magnetic fields in which return stroke models are used to specify the source are considered, including equations for fields and channel-base current, as well as a discussion of channel tortuosity and branches.
Abstract: Four classes of models of the lightning return stroke are reviewed. These four classes are: (1) the gas dynamic models; (2) the electromagnetic models; (3) the distributed-circuit models; and (4) the "engineering" models. Validation of the reviewed models is discussed. For the gas dynamic models, validation is based on observations of the optical power and spectral output from natural lightning. The electromagnetic, distributed-circuit, and "engineering" models are most conveniently validated using measured electric and magnetic fields from natural and triggered lightning. Based on the entirety of the validation results and on mathematical simplicity, we rank the "engineering" models in the following descending order: MTLL, DU, MTLE, BG, and TL. When only the initial peak values of the channel-base current and remote electric or magnetic field are concerned, the TL model is preferred. Additionally discussed are several issues in lightning return-stroke modeling that either have been ignored to keep the modeling straightforward or have not been recognized, such as the treatment of the upper, in-cloud portion of the lightning channel, the boundary conditions at the ground, including the presence of a vertically extended strike object, the return-stroke speed at early times, the initial bi-directional extension of the return stroke channel, and the relation between leader and return stroke models. Various aspects of the calculation of lightning electric and magnetic fields in which return stroke models are used to specify the source are considered, including equations for fields and channel-base current, as well as a discussion of channel tortuosity and branches.

529 citations

Journal ArticleDOI
TL;DR: A review paper as mentioned in this paper summarizes major publications on lightning and lightning protection since the first special issue published in November 1998, i.e., during the last decade, and is organized in the following five sections: lightning discharge observations, lightning discharge-modeling, lightning occurrence characteristics/lightning locating systems, lightning electromagnetic pulse and lightning induced effects, and protection against lightning-induced effects.
Abstract: This review paper, prepared for this second special issue on lightning of the IEEE Transactions on Electromagnetic Compatibility, summarizes major publications on lightning and lightning protection since the first special issue published in November 1998, i.e., during the last decade. The review is organized in the following five sections: lightning discharge-observations, lightning discharge-modeling, lightning occurrence characteristics/lightning locating systems, lightning electromagnetic pulse and lightning-induced effects, and protection against lightning-induced effects.

216 citations

Journal ArticleDOI
TL;DR: In this paper, X-ray and electric field measurements were made during five nearby negative natural lightning strikes in north central Florida during the summer of 2004, demonstrating unambiguously that the source of lightning X rays is closely related to the stepping process.
Abstract: [1] X-ray and electric field measurements were made during five nearby negative natural lightning strikes in north central Florida during the summer of 2004. The observed X-ray emission typically was detected ∼1 ms before the first return stroke, during the stepped-leader phase, and had energies extending up to a few hundred keV. The X rays were produced in discrete, intense bursts emitted in coincidence with the formation of the leader steps, demonstrating unambiguously that the source of lightning X rays is closely related to the stepping process. The X-ray emission from lightning stepped leaders is found to be remarkably similar to that from lightning dart leaders, suggesting that these different types of leaders share a common mechanism. The reported observations have important implications for understanding how runaway breakdown occurs and how lightning leaders propagate.

207 citations


Cited by
More filters
01 Feb 2009
TL;DR: This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale, and what might be coming next.
Abstract: Secret History: Return of the Black Death Channel 4, 7-8pm In 1348 the Black Death swept through London, killing people within days of the appearance of their first symptoms. Exactly how many died, and why, has long been a mystery. This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale. And they ask, what might be coming next?

5,234 citations

Journal ArticleDOI
TL;DR: The U.S. National Lightning Detection Network (NLDN) has provided real-time and historical lightning data to the electric utility industry, the National Weather Service, and other government and commercial users.
Abstract: The U.S. National Lightning Detection Network TM (NLDN) has provided lightning data covering the continental United States since 1989. Using information gathered from more than 100 sensors, the NLDN provides both real-time and historical lightning data to the electric utility industry, the National Weather Service, and other government and commercial users. It is also the primary source of lightning data for use in research and climatological studies in the United States. In this paper we discuss the design, implementation, and data from the time-of-arrival/magnetic direction finder (TOA/MDF) network following a recent system-wide upgrade. The location accuracy (the maximum dimension of a confidence region around the stroke location) has been improved by a factor of 4 to 8 since 1991, resulting in a median accuracy of 500 m. The expected flash detection efficiency ranges from 80% to 90% for those events with peak currents above 5 kA, varying slightly by region. Subsequent strokes and strokes with peak currents less than 5 kA can now be detected and located; however, the detection efficiency for these events is not quantified in this study because their peak current distribution is not well known.

1,010 citations

Journal ArticleDOI
31 Jan 2003-Science
TL;DR: The 1998–2002 droughts spanning the United States, southern Europe, and Southwest Asia were linked through a common oceanic influence and climate models show that the climate signals forced separately by these regions acted synergistically, each contributing to widespread mid-latitude drying.
Abstract: The 1998-2002 droughts spanning the United States, southern Europe, and Southwest Asia were linked through a common oceanic influence. Cold sea surface temperatures (SSTs) in the eastern tropical Pacific and warm SSTs in the western tropical Pacific and Indian oceans were remarkably persistent during this period. Climate models show that the climate signals forced separately by these regions acted synergistically, each contributing to widespread mid-latitude drying: an ideal scenario for spatially expansive, synchronized drought. The warmth of the Indian and west Pacific oceans was unprecedented and consistent with greenhouse gas forcing. Some implications are drawn for future drought.

661 citations

Journal ArticleDOI
TL;DR: The history leading to modern LLSs that sense lightning radiation fields at multiple remote sensors, focusing on the interactions between enabling technology, scientific discovery, technical development, and uses of the data are described.
Abstract: Lightning in all corners of the world is monitored by one or more land- or space-based lightning locating systems (LLSs). The applications that have driven these developments are numerous and varied. This paper describes the history leading to modern LLSs that sense lightning radiation fields at multiple remote sensors, focusing on the interactions between enabling technology, scientific discovery, technical development, and uses of the data. An overview of all widely used detection and location methods is provided, including a general discussion of their relative strengths and weaknesses for various applications. The U.S. National Lightning Detection Network (NLDN) is presented as a case study, since this LLS has been providing real-time lightning information since the early 1980s, and has provided continental-scale (U.S.) information to research and operational users since 1989. This network has also undergone a series of improvements during its >20-year life in response to evolving detection technologies and expanding requirements for applications. Recent analyses of modeled and actual performance of the current NLDN are also summarized. The paper concludes with a view of the short- and long-term requirements for improved lightning measurements that are needed to address some open scientific questions and fill the needs of emerging applications.

586 citations

Journal ArticleDOI
TL;DR: The best estimate of the annual global LNOx nitrogen oxides nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this paper, implying larger flash-specific NOx emissions.
Abstract: . The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40)×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NOx emissions. The paper estimates the LNOx accuracy required for various applications and lays out strategies for improving estimates in the future. An accuracy of about 1 Tg a−1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.

573 citations