scispace - formally typeset
Search or ask a question
Author

Vladimir A. Yurovsky

Bio: Vladimir A. Yurovsky is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Feshbach resonance & Bose–Einstein condensate. The author has an hindex of 16, co-authored 52 publications receiving 2013 citations. Previous affiliations of Vladimir A. Yurovsky include Kavli Institute for Theoretical Physics & National Institute of Standards and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The relaxation hypothesis is confirmed through an ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice, and a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation.
Abstract: In this Letter we pose the question of whether a many-body quantum system with a full set of conserved quantities can relax to an equilibrium state, and, if it can, what the properties of such a state are. We confirm the relaxation hypothesis through an ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation. Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the usual thermodynamic one. This effect may have many experimental consequences, some of which have already been observed in the recent experiment on the nonequilibrium dynamics of one-dimensional hard-core bosons in a harmonic potential [T. Kinoshita et al., Nature (London) 440, 900 (2006)].

1,390 citations

Book ChapterDOI
TL;DR: In this paper, the theory of these atom waveguides and their experimental realizations are reviewed, with emphasis on the collisions of waveguide-bound particles, and the necessary criteria for integrability and its observable effects.
Abstract: Elongated atom traps can confine ultracold gases in the quasi-one-dimensional regime. We review both the theory of these atom waveguides and their experimental realizations, with emphasis on the collisions of waveguide-bound particles. Under certain conditions, quasi-one-dimensional gases are well described by integrable one-dimensional many-body models with exact quantum solutions. We review the thermodynamic and correlation properties of one such model that has been experimentally realized, that of Lieb and Liniger. We describe the necessary criteria for integrability and its observable effects. We also consider ways to lift integrability, along with some observable effects of non-integrability.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the system of coupled atomic and molecular condensates within the two-mode model and beyond mean-field theory, and showed that large-amplitude atom-molecule coherent oscillations are damped by the rapid growth of fluctuations near the dynamically unstable molecular mode.
Abstract: We study the system of coupled atomic and molecular condensates within the two-mode model and beyond mean-field theory. Large-amplitude atom-molecule coherent oscillations are shown to be damped by the rapid growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscillation is also shown to scale as $\sqrt{N}/\mathrm{ln}N$ with the total number of atoms N, rather than the expected pure $\sqrt{N}$ scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular condensate in the vicinity of the instability, and show that the important effect neglected by mean-field theory is an initially nonexponential ``spontaneous'' dissociation into the atomic vacuum. Starting with a small population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the fastest (superexponential) rate observed for the entangled state formed by spontaneous dissociation.

91 citations

Journal ArticleDOI
TL;DR: Stenger et al. as mentioned in this paper proposed a mechanism to account for the observed losses, based on the deactivation of the resonant molecular state by interaction with a third condensate atom.
Abstract: In recent experiments on Na Bose-Einstein condensates [S. Inouye et al, Nature 392, 151 (1998); J. Stenger et al, Phys. Rev. Lett. 82, 2422 (1999)], large loss rates were observed when a time-varying magnetic field was used to tune a molecular Feshbach resonance state near the state of pairs of atoms belonging to the condensate many-body wavefunction. A mechanism is offered here to account for the observed losses, based on the deactivation of the resonant molecular state by interaction with a third condensate atom.

45 citations

Journal ArticleDOI
TL;DR: It is shown that the expectation value after relaxation of a generic observable is given by a linear interpolation between its initial and thermal expectation values, which governs the whole spectrum of the chaotic behavior from integrable regime through the well-developed quantum chaos.
Abstract: Two zero-range-interacting atoms in a circular, transversely harmonic waveguide are used as a test bench for a quantitative description of the crossover between integrability and chaos in a quantum system with no selection rules. For such systems we show that the expectation value after relaxation of a generic observable is given by a linear interpolation between its initial and thermal expectation values. The variable of this interpolation is universal; it governs this simple law to cover the whole spectrum of the chaotic behavior from integrable regime through the well-developed quantum chaos. The predictions are confirmed for the waveguide system, where the mode occupations and the trapping energy were used as the observables of interest; a variety of the initial states and a full range of the interaction strengths have been tested.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

2,642 citations

Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Abstract: It is demonstrated that an isolated generic quantum many-body system does relax to a state well described by the standard statistical mechanical prescription The thermalization happens at the level of individual eigenstates, allowing the computation of thermal averages from knowledge of any eigenstate in the microcanonical energy window An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive Recently, meaningful experimental studies1,2 of the problem have become possible, stimulating theoretical interest3,4,5,6,7 In generic isolated systems, non-equilibrium dynamics is expected8,9 to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible10 For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete11 Some recent studies4,5 even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch12 and Srednicki13 A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result

2,598 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Abstract: This Colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems There is particularly a focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian Several aspects of the slow dynamics in driven systems are discussed and the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions is emphasized Recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis is also reviewed and relaxation in integrable systems is discussed Finally key experiments probing quantum dynamics in cold atom systems are overviewed and put into the context of our current theoretical understanding

2,340 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics.
Abstract: We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and...

1,945 citations