scispace - formally typeset
Search or ask a question
Author

Vladimir E. Korepin

Bio: Vladimir E. Korepin is an academic researcher from Stony Brook University. The author has contributed to research in topics: Quantum entanglement & Bethe ansatz. The author has an hindex of 60, co-authored 320 publications receiving 18000 citations. Previous affiliations of Vladimir E. Korepin include Russian Academy of Sciences & Steklov Mathematical Institute.


Papers
More filters
Posted Content
TL;DR: In this article, a detailed explanation of Bethe Ansatz, Quantum Inverse Scattering Method and Algebraic Bether Ansatz as well as main models are Nonlinear Schrodinger equation (one dimensional Bose gas), Sine-Gordon and Thiring models.
Abstract: The book contain detailed explanation of Bethe Ansatz, Quantum Inverse Scattering Method and Algebraic Bether Ansatz as well. Main Models are Nonlinear Schrodinger equation (one dimensional Bose gas), Sine-Gordon and Thiring models. Heisenberg Antiferromagnet and Hubbard models. It is explained in detail, how to calculate correlation functions.

2,160 citations

01 Aug 1993
TL;DR: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References as discussed by the authors
Abstract: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References.

1,491 citations

MonographDOI
07 Feb 2005
TL;DR: In this article, the authors present an algebraic approach to the Hubbard model and a path integral approach to thermodynamics, as well as the Yangian symmetry of the model in the infinite interval limit.
Abstract: Preface 1. Introduction 2. The Hubbard Hamiltonian and its symmetries 3. The Bethe ansatz solution 4. String hypothesis 5. Thermodynamics in the Yang-Yang approach 6. Ground state properties in the thermodynamic limit 7. Excited states at zero temperature 8. Finite size corrections at zero temperature 9. Asymptotics of correlation functions 10. Scaling and continuum limits at half-filling 11. Universal correlations at low density 12. The algebraic approach to the Hubbard model 13. The path integral approach to thermodynamics 14. The Yangian symmetry of the Hubbard model 15. S-matrix and Yangian symmetry in the infinite interval limit 16. Hubbard model in the attractive case 17. Mathematical appendices References Index.

1,033 citations

Journal ArticleDOI
TL;DR: In this paper, a class of completely integrable models of statistical mechanics and quantum field theory is considered, including the quantum nonlinear Schrodinger equation and the HeisenbergXXZ model.
Abstract: A class of two dimensional completely integrable models of statistical mechanics and quantum field theory is considered. Eigenfunctions of the Hamiltonians are known for these models. Norms of these eigenfunctions in the finite box are calculated in the present paper. These models include in particular the quantum nonlinear Schrodinger equation and the HeisenbergXXZ model.

892 citations

Journal ArticleDOI
TL;DR: In this paper, the entropy of a block of neighbor spins at zero temperature and of an infinite system was derived in terms of a Toeplitz determinant and the asymptotic decomposition was derived analytically.
Abstract: We consider the one-dimensional quantum spin chain, which is called the XX model (XX0 model or isotropic XY model) in a transverse magnetic field. We are mainly interested in the entropy of a block of Lneighboring spins at zero temperature and of an infinite system. We represent the entropy in terms of a Toeplitz determinant and calculate the asymptotic analytically. We derive the first two terms of the asymptotic decomposition. Interestingly, these two terms of decomposition clearly show a length scale related to the field h.

489 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: In this article, a systematic study of entanglement entropy in relativistic quantum field theory is carried out, where the von Neumann entropy is defined as the reduced density matrix ρA of a subsystem A of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, and the results are verified for a free massive field theory.
Abstract: We carry out a systematic study of entanglement entropy in relativistic quantum field theory. This is defined as the von Neumann entropy SA = −Tr ρAlogρA corresponding to the reduced density matrix ρA of a subsystem A. For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, we re-derive the result of Holzhey et al when A is a finite interval of length in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length ξ is large but finite, we show that , where is the number of boundary points of A. These results are verified for a free massive field theory, which is also used to confirm a scaling ansatz for the case of finite size off-critical systems, and for integrable lattice models, such as the Ising and XXZ models, which are solvable by corner transfer matrix methods. Finally the free field results are extended to higher dimensions, and used to motivate a scaling form for the singular part of the entanglement entropy near a quantum phase transition.

3,029 citations

Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Abstract: It is demonstrated that an isolated generic quantum many-body system does relax to a state well described by the standard statistical mechanical prescription The thermalization happens at the level of individual eigenstates, allowing the computation of thermal averages from knowledge of any eigenstate in the microcanonical energy window An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive Recently, meaningful experimental studies1,2 of the problem have become possible, stimulating theoretical interest3,4,5,6,7 In generic isolated systems, non-equilibrium dynamics is expected8,9 to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible10 For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete11 Some recent studies4,5 even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch12 and Srednicki13 A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result

2,598 citations