scispace - formally typeset
Search or ask a question
Author

Vladimir I. Bazaliiskii

Bio: Vladimir I. Bazaliiskii is an academic researcher from Irkutsk State University. The author has contributed to research in topics: Population & Bronze Age. The author has an hindex of 19, co-authored 43 publications receiving 1319 citations.

Papers
More filters
Journal ArticleDOI
Peter de Barros Damgaard1, Nina Marchi2, Simon Rasmussen3, Michaël Peyrot4, Gabriel Renaud1, Thorfinn Sand Korneliussen5, Thorfinn Sand Korneliussen1, J. Víctor Moreno-Mayar1, Mikkel Winther Pedersen5, Amy Goldberg6, Emma Usmanova7, Nurbol Baimukhanov, Valeriy Loman7, Lotte Hedeager8, Anders Gorm Pedersen3, Kasper Nielsen3, Gennady Afanasiev9, Kunbolot Akmatov, Almaz Aldashev10, Ashyk Alpaslan, Gabit Baimbetov, Vladimir I. Bazaliiskii11, Arman Beisenov, Bazartseren Boldbaatar12, Bazartseren Boldgiv13, Choduraa Dorzhu14, Sturla Ellingvåg, Diimaajav Erdenebaatar, Rana Dajani15, Rana Dajani16, Evgeniy Dmitriev7, Valeriy Evdokimov7, Karin Margarita Frei, Andrey Gromov, Alexander Goryachev, Hakon Hakonarson17, Tatyana Hegay, Zaruhi Khachatryan18, Ruslan Khaskhanov9, Egor Kitov9, Alina Kolbina, Tabaldiev Kubatbek, Alexey Kukushkin7, Igor Kukushkin7, Nina Lau, Ashot Margaryan1, Ashot Margaryan19, Inga Merkyte1, Ilya V. Mertz, Viktor K. Mertz, Enkhbayar Mijiddorj, Vyacheslav Moiyesev, Gulmira Mukhtarova, Bekmukhanbet Nurmukhanbetov, Z. Orozbekova9, Irina P. Panyushkina20, Karol Pieta21, Václav Smrčka22, Irina Shevnina, Andrey Logvin, Karl-Göran Sjögren23, Tereza Štolcová21, Angela M. Taravella24, Kadicha Tashbaeva10, Alexander Tkachev9, Turaly Tulegenov, Dmitriy Voyakin, Levon Yepiskoposyan18, Sainbileg Undrakhbold13, Victor Varfolomeev7, Andrzej W. Weber25, Melissa A. Wilson Sayres24, Nikolay N. Kradin9, Morten E. Allentoft1, Ludovic Orlando1, Ludovic Orlando26, Rasmus Nielsen27, Rasmus Nielsen1, Martin Sikora1, Evelyne Heyer2, Kristian Kristiansen23, Eske Willerslev1, Eske Willerslev5, Eske Willerslev28 
09 May 2018-Nature
TL;DR: The genomes of 137 ancient and 502 modern human genomes illuminate the population history of the Eurasian steppes after the Bronze Age and document the replacement of Indo-European speakers of West Eurasian ancestry by Turkic-speaking groups of East Asian ancestry.
Abstract: For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century bc, forming the Hun traditions in the fourth–fifth century ad, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry. Sequences of 137 ancient and 502 modern human genomes illuminate the population history of the Eurasian steppes after the Bronze Age and document the replacement of Indo-European speakers of West Eurasian ancestry by Turkic-speaking groups of East Asian ancestry.

280 citations

Journal ArticleDOI
29 Jun 2018-Science
TL;DR: Analysis of ancient whole-genome sequences from across Inner Asia and Anatolia shows that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya, and suggests distinct migrations bringing West Eurasian ancestry into South Asia before and after, but not at the time of, YamNaya culture.
Abstract: The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyze 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after but not at the time of Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia.

273 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined two Cis-Baikal canid burials, one of a wolf and the other of a dog, both in large Middle Holocene hunter-gatherer cemeteries.

128 citations

Journal ArticleDOI
30 Oct 2020-Science
TL;DR: It is found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow.
Abstract: Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.

116 citations

Journal ArticleDOI
TL;DR: Stable isotope values in older subadults do not differ from adults suggesting the absence of age-based food allocation, and contrasting the δ(15) N values of the metaphysis to the diaphysis permits a more precise determination of breastfeeding-weaning status.
Abstract: Analysis of stable nitrogen and carbon isotopes (δ(15) N and δ(13) C) from subadults and adults allows for assessment of age-related dietary changes, including breastfeeding and weaning, and adoption of an adult diet. In one of the first studies of hunter-fisher-gatherer subadults from Eurasia, three Neolithic (8,800-5,200 calBP) mortuary sites from southwestern Siberia are analyzed to evaluate hypothesized differences in weaning age between Early versus Late Neolithic groups. An intra-individual sampling methodology is used to compare bone formed at different ages. Collagen samples (n = 143) from three different growth areas of long bones-the proximal metaphysis, diaphysis, and distal metaphysis-were obtained from 49 subadults aged birth to 10 years. In infants (birth to 3 years, n = 23) contrasting the δ(15) N values of the metaphysis, which contains newer bone, to the δ(15) N values of the diaphysis, which contains older bone, permits a more precise determination of breastfeeding-weaning status. In Early and Late Neolithic groups breast milk was the major protein source until the age of 2-3 years. However, there are differences in the age of weaning completion and duration: Early Neolithic groups weaned their infants at a later age and over a shorter amount of time. Differences may have affected infant morbidity and mortality, and female fecundity and inter-birth intervals. Stable isotope values in older subadults (4-10 years, n = 26) do not differ from adults suggesting the absence of age-based food allocation.

103 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal Article
TL;DR: In this article, a categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of the weathering rates and processes of recent mammals in the Amboseli Basin.
Abstract: Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, in- cluding those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.

2,035 citations

Journal ArticleDOI
01 May 1969-Nature
TL;DR: Animal Bones in ArchaeologyBook of Notes and Drawings for Beginners.
Abstract: Animal Bones in Archaeology Book of Notes and Drawings for Beginners. By Michael L. Ryder. (Mammal Society Handbooks.) Pp. xxiv + 65. (Blackwell (Scientific): Oxford and Edinburgh. Published for the Mammal Society, 1969.) 17s.

732 citations

Journal ArticleDOI
TL;DR: An overview on how EnteroBase works, what it can do, and its future prospects is provided.
Abstract: EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.

469 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan13, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua2, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas41, Andres Ruiz-Linares41, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems43, Richard Villems38, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich2, David Reich64, David Reich1, Johannes Krause3, Johannes Krause4 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, University of Edinburgh13, Sultan Qaboos University14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, Amgen40, University College London41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations