scispace - formally typeset
Search or ask a question
Author

Vladimir Joukov

Other affiliations: University of Helsinki
Bio: Vladimir Joukov is an academic researcher from Harvard University. The author has contributed to research in topics: Vascular endothelial growth factor & Vascular endothelial growth factor C. The author has an hindex of 29, co-authored 33 publications receiving 10862 citations. Previous affiliations of Vladimir Joukov include University of Helsinki.

Papers
More filters
Journal ArticleDOI
TL;DR: VEGF‐C is a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.
Abstract: Angiogenesis, the sprouting of new blood vessels from pre-existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2) The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development In this study, we have purified the Flt4 ligand, VEGF-C, and cloned its cDNA from human prostatic carcinoma cells While VEGF-C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C-terminal half contains extra cysteine-rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans VEGF-C is proteolytically processed, binds Flt4, which we rename as VEGFR-3 and induces tyrosine autophosphorylation of VEGFR-3 and VEGFR-2 In addition, VEGF-C stimulated the migration of bovine capillary endothelial cells in collagen gel VEGF-C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed

1,734 citations

Journal ArticleDOI
30 May 1997-Science
TL;DR: VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis, and may be of potential use in therapeutic lymphangiogenesis.
Abstract: No growth factors specific for the lymphatic vascular system have yet been described. Vascular endothelial growth factor (VEGF) regulates vascular permeability and angiogenesis, but does not promote lymphangiogenesis. Overexpression of VEGF-C, a ligand of the VEGF receptors VEGFR-3 and VEGFR-2, in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement. Thus, VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis. VEGF-C may play a role in disorders involving the lymphatic system and may be of potential use in therapeutic lymphangiogenesis.

1,297 citations

Journal ArticleDOI
TL;DR: The results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.
Abstract: We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.

838 citations

Journal ArticleDOI
TL;DR: The role of post‐translational processing in VEGF‐C secretion and function is analysed, and novel structure–function relationships in the PDGF/VEGF family are revealed.
Abstract: The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.

825 citations


Cited by
More filters
Journal ArticleDOI
14 Sep 2000-Nature
TL;DR: Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases and integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases, but owing to several unanswered questions, caution is needed.
Abstract: Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases Concentrated efforts in this area of research are leading to the discovery of a growing number of pro- and anti-angiogenic molecules, some of which are already in clinical trials The complex interactions among these molecules and how they affect vascular structure and function in different environments are now beginning to be elucidated This integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases But owing to several unanswered questions, caution is needed

8,561 citations

Journal ArticleDOI
09 Aug 1996-Cell
TL;DR: The work from the authors' laboratories reviewed herein was supported by grants from the National Cancer Institute.

6,895 citations

Journal ArticleDOI
TL;DR: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult.
Abstract: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult1 Neovascularization (angiogenesis) is also implicated in the pathogenesis of a number of disorders These include: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis1,2 A strong correlation has been noted between density of microvessels in primary breast cancers and their nodal metastases and patient survival3 Similarly, a correlation has been reported between vascularity and invasive behavior in several other tumors4–6

4,603 citations

Journal ArticleDOI
TL;DR: The cellular and molecular mechanisms underlying the formation of endothelium-lined channels and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.
Abstract: Endothelial and smooth muscle cells interact with each other to form new blood vessels. In this review, the cellular and molecular mechanisms underlying the formation of endothelium-lined channels (angiogenesis) and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.

4,154 citations

Journal ArticleDOI
22 Nov 1999-Oncogene
TL;DR: It is argued that NF-κB functions more generally as a central regulator of stress responses and pairing stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Abstract: Sixteen years have passed since the description of the nuclear factor-кB (NF-кB) as a regulator of к light-chain gene expression in murine B lymphocytes (Sen & Baltimore, 1986a) During that time, over 4,000 publications have appeared, characterizing the family of Rel/NF-кB transcription factors involved in the control of a large number of normal and pathological cellular processes The physiological functions of NF-кB proteins include immunological and inflammatory responses, developmental processes, cellular growth and modulating effects on apoptosis In addition, these factors are activated in a number of diseases, including cancer, arthritis, acute and chronic inflammatory states, asthma, as well as neurodegenerative and heart diseases

3,728 citations