scispace - formally typeset
Search or ask a question
Author

Vladimir Kren

Bio: Vladimir Kren is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Spontaneously hypertensive rat & Chemistry. The author has an hindex of 44, co-authored 178 publications receiving 8299 citations. Previous affiliations of Vladimir Kren include Charles University in Prague & Université de Montréal.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridaemia in SHR and may be important in the pathogenesis of human insulin-resistance syndromes.
Abstract: The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and essential hypertension, are complex disorders whose genetic basis is unknown. The spontaneously hypertensive rat (SHR) is insulin resistant and a model of these human syndromes. Quantitative trait loci (QTLs) for SHR defects in glucose and fatty acid metabolism, hypertriglyceridaemia and hypertension map to a single locus on rat chromosome 4. Here we combine use of cDNA microarrays, congenic mapping and radiation hybrid (RH) mapping to identify a defective SHR gene, Cd36 (also known as Fat, as it encodes fatty acid translocase), at the peak of linkage to these QTLs. SHR Cd36 cDNA contains multiple sequence variants, caused by unequal genomic recombination of a duplicated ancestral gene. The encoded protein product is undetectable in SHR adipocyte plasma membrane. Transgenic mice overexpressing Cd36 have reduced blood lipids. We conclude that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridaemia in SHR and may be important in the pathogenesis of human insulin-resistance syndromes.

750 citations

Journal ArticleDOI
TL;DR: This work mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome in the BXH/HXB panel of rat recombinant inbred strains and generated a data set of 73 candidate genes for hypertension that merit testing in human populations.
Abstract: Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.

527 citations

Journal ArticleDOI
TL;DR: This review critically surveys the literature published mainly within this millennium on the new and emerging applications of silybin (pure, chemically defined substance) and silymarin (flavonoid complex from Silybum marianum - milk thistle seeds).
Abstract: This review critically surveys the literature published mainly within this millennium on the new and emerging applications of silybin (pure, chemically defined substance) and silymarin (flavonoid complex from Silybum marianum - milk thistle seeds). These compounds used so far mostly as hepatoprotectants were shown to have other interesting activities, e.g. anticancer and canceroprotective and also hypocholesterolemic activity. These effects were demonstrated in a large variety of illnesses of different organs, e.g. prostate, lungs, CNS, kidneys, pancreas and also in the skin protection. Besides the cytoprotective activity of silybin mediated by its antioxidative and radical-scavenging properties also new functions based on the specific receptor interaction were discovered. These were studied on the molecular level and modulation of various cell-signaling pathways with silybin was disclosed - e.g. NF-κ B, inhibition of EGFR-MAPK/ERK1/2 signaling, activity upon Rb and E2F proteins, IGF-receptor signaling. Proapoptotic activity of silybin in pre- and/or cancerogenic cells and anti-angiogenic activity of silybin are other important findings that bring silymarin preparations closer to respective application in the cancer treatment. Discovery of the inhibition and modulation of drug transporters, Pglycoproteins, estrogenic receptors, nuclear receptors by silybin and some of its new derivatives contribute further to the better understanding of silybin activity on the molecular level. Silymarin application in veterinary medicine is reviewed as well. Recent works using optically pure silybin diastereomers clearly indicate extreme importance of the use of optically active silybin namely in the receptor studies. Significance of silymarin and its components in the medicine is clearly indicated by an exponential growth of publications on this topic - over 800 papers in the last 5 years.

495 citations

Journal ArticleDOI
TL;DR: The construction of the first complete genetic linkage map of the laboratory rat is reported, identifying 432 markers that show polymorphisms between the SHR and BN rat strains and mapped them in a single SHR × BN F2 intercross.
Abstract: We report the construction of the first complete genetic linkage map of the laboratory rat. By testing 1171 simple sequence length polymorphisms (SSLPs), we have identified 432 markers that show polymorphisms between the SHR and BN rat strains and mapped them in a single (SHR × BN) F2 intercross. The loci define 21 large linkage groups corresponding to the 21 rat chromosomes, together with a pair of nearby markers on chromosome 9 that are not linked to the rest of the map. Because 99.5% of the markers fall into one of the 21 large linkage groups, the maps appear to cover the vast majority of the rat genome. The availability of the map should facilitate whole genome scans for genes underlying qualitative and quantitative traits relevant to mammalian physiology and pathobiology.

478 citations

Journal ArticleDOI
TL;DR: An array of glycoside compounds currently used in medicine but also with biological activity of some glycosidic metabolites of the known drugs are dealt with.
Abstract: Numbers of biologically active compounds are glycosides. Sometimes, the glycosidic residue is crucial for their activity, in other cases glycosylation only improves pharmacokinetic parameters. Recent developments in molecular glycobiology brought better understanding to the aglycone vs. glycoside activities, and made possible to develop new, more active or more effective glycodrugs based on these findings - very illustrative recent example is the story of vancomycin. This paper deals with an array of glycosidic compounds currently used in medicine but also with biological activity of some glycosidic metabolites of the known drugs. It involves glycosides of vitamins, polyphenolic glycosides (flavonoids), alkaloid glycosides, glycosides in the group of antibiotics, glycopeptides, cardiac glycosides, steroid and terpenoid glycosides etc. The physiological role of the glycosyl and structure-activity relations (SAR) in the glycosidic moiety (-ies) are discussed.

420 citations


Cited by
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
TL;DR: It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home, which gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension.
Abstract: Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure-related risk, and to guide management. The auscultatory technique with a trained observer and mercury sphygmomanometer continues to be the method of choice for measurement in the office, using the first and fifth phases of the Korotkoff sounds, including in pregnant women. The use of mercury is declining, and alternatives are needed. Aneroid devices are suitable, but they require frequent calibration. Hybrid devices that use electronic transducers instead of mercury have promise. The oscillometric method can be used for office measurement, but only devices independently validated according to standard protocols should be used, and individual calibration is recommended. They have the advantage of being able to take multiple measurements. Proper training of observers, positioning of the patient, and selection of cuff size are all essential. It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. Twenty-four-hour ambulatory monitoring gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension. There is increasing evidence that a failure of blood pressure to fall during the night may be associated with increased risk. In obese patients and children, the use of an appropriate cuff size is of paramount importance.

4,327 citations

Journal ArticleDOI
TL;DR: This work discloses that expression of Hsps can occur in nature, all species have hsp genes but they vary in the patterns of their expression, and Hsp expression can be correlated with resistance to stress, and species' thresholds for HSP expression are correlated with levels of stress that they naturally undergo.
Abstract: Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.

3,841 citations

Journal ArticleDOI
TL;DR: The evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology is presented.
Abstract: Thereisgrowinginterestinthepossiblehealththreatposedbyendocrine-disruptingchemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor , retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. (Endocrine Reviews 30: 293–342, 2009)

3,576 citations

Journal ArticleDOI
14 Mar 1996-Nature
TL;DR: The last version of the Généthon human linkage map is reported, which consists of 5,264 short tandem repeat polymorphisms with a mean heterozygosity of 70%.
Abstract: The great increase in successful linkage studies in a number of higher eukaryotes during recent years has essentially resulted from major improvements in reference genetic linkage maps, which at present consist of short tandem repeat polymorphisms of simple sequences or microsatellites. We report here the last version of the Genethon human linkage map. This map consists of 5,264 short tandem (AC/TG)n repeat polymorphisms with a mean heterozygosity of 70%. The map spans a sex-averaged genetic distance of 3,699 cM and comprises 2,335 positions, of which 2,032 could be ordered with an odds ratio of at least 1,000:1 against alternative orders. The average interval size is 1.6 cM; 59% of the map is covered by intervals of 2 cM at most and 1% remains in intervals above 10 cM.

2,982 citations