scispace - formally typeset
Search or ask a question
Author

Vladimir N. Belykh

Bio: Vladimir N. Belykh is an academic researcher from Volga State University of Water Transport. The author has contributed to research in topics: Synchronization of chaos & Attractor. The author has an hindex of 16, co-authored 48 publications receiving 1357 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented.
Abstract: Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science and technology, is illustrated through concrete examples of coupled biological cell models.

184 citations

Journal ArticleDOI
TL;DR: The paper presents a qualitative analysis of an array of diffusively coupled identical continuous time dynamical systems and finds the existence of various invariant manifolds, a self-similar behavior, and a hierarchy and embedding of the manifolds of the coupled system.
Abstract: The paper presents a qualitative analysis of an array of diffusively coupled identical continuous time dynamical systems.The effects of full, partial, anti-phase and in-phase-anti-phase chaotic synchronization are investigated via the linear invariant manifolds of the corresponding differential equations. Existence of various invariant manifolds, a self-similar behavior, a hierarchy and embedding of the manifolds of the coupled system are discovered. Sufficient conditions for the stability of the invariant manifolds are obtained via the method of Lyapunov functions. Conditions under which full global synchronization can not be achieved even for the largest coupling constant are defined. The general rigorous results are illustrated through examples of coupled Lorenz-like and coupled Rossler systems.

149 citations

Journal ArticleDOI
21 Feb 2003-Chaos
TL;DR: Analytical and numerical studies allow us to conclude that these cluster synchronization regimes persist when the chaotic oscillators have slightly different parameters, and they are stable and robust against up to 10%-15% parameter mismatch and against small noise.
Abstract: Two-dimensional (2D) lattices of diffusively coupled chaotic oscillators are studied. In previous work, it was shown that various cluster synchronization regimes exist when the oscillators are identical. Here, analytical and numerical studies allow us to conclude that these cluster synchronization regimes persist when the chaotic oscillators have slightly different parameters. In the analytical approach, the stability of almost-perfect synchronization regimes is proved via the Lyapunov function method for a wide class of systems, and the synchronization error is estimated. Examples include a 2D lattice of nonidentical Lorenz systems with scalar diffusive coupling. In the numerical study, it is shown that in lattices of Lorenz and Rossler systems the cluster synchronization regimes are stable and robust against up to 10%–15% parameter mismatch and against small noise.

120 citations

Journal ArticleDOI
22 Sep 2008-Chaos
TL;DR: The conditions for cluster partitioning into ensembles for identical chaotic systems are studied, focusing mainly on the existence and the stability of unique unconditional clusters whose rise does not depend on the origin of the other clusters.
Abstract: Synchronous behavior in networks of coupled oscillators is a commonly observed phenomenon attracting a growing interest in physics, biology, communication, and other fields of science and technology. Besides global synchronization, one can also observe splitting of the full network into several clusters of mutually synchronized oscillators. In this paper, we study the conditions for such cluster partitioning into ensembles for the case of identical chaotic systems. We focus mainly on the existence and the stability of unique unconditional clusters whose rise does not depend on the origin of the other clusters. Also, conditional clusters in arrays of globally nonsymmetrically coupled identical chaotic oscillators are investigated. The design problem of organizing clusters into a given configuration is discussed.

118 citations

Journal ArticleDOI
TL;DR: A general framework for studying global complete synchronization in networks of dynamical systems with asymmetrical connections is presented, originally developed for symmetrically coupled networks, to the general asymmetrical case.

111 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
TL;DR: The advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology are reported and the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections are overviewed.

2,953 citations

Journal ArticleDOI
TL;DR: Synchronization of chaos refers to a process where two chaotic systems adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy) as discussed by the authors.

2,266 citations

Journal ArticleDOI
TL;DR: The Computational Brain this paper provides a broad overview of neuroscience and computational theory, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research.

1,472 citations