scispace - formally typeset
Search or ask a question
Author

Vladimir Sivakov

Bio: Vladimir Sivakov is an academic researcher from Leibniz Institute of Photonic Technology. The author has contributed to research in topics: Silicon & Nanowire. The author has an hindex of 25, co-authored 80 publications receiving 2100 citations. Previous affiliations of Vladimir Sivakov include Max Planck Society & Saarland University.


Papers
More filters
Journal ArticleDOI
TL;DR: Silicon nanowire (SiNW)-based solar cells on glass substrates have been fabricated by wet electroless chemical etching (using silver nitrate and hydrofluoric acid) of 2.7 microm multicrystalline p(+)nn(+) doped silicon layers thereby creating the nanowires structure.
Abstract: Silicon nanowire (SiNW)-based solar cells on glass substrates have been fabricated by wet electroless chemical etching (using silver nitrate and hydrofluoric acid) of 2.7 μm multicrystalline p+nn+ doped silicon layers thereby creating the nanowire structure. Low reflectance ( 90% at 500 nm) have been measured. The highest open-circuit voltage (Voc) and short-circuit current density (Jsc) for AM1.5 illumination were 450 mV and 40 mA/cm2, respectively at a maximum power conversion efficiency of 4.4%.

487 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, magnetic and dielectrical properties versus chemical composition of composite materials have been investigated in terms of microstructure analysis and such parameters as the grain size, porosity and density.

119 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the morphology of the starting silver layer/Ag nanoparticles that form during processing on the Si wafer surfaces strongly influences the morphology and homogeneity of the etch profile.
Abstract: Silicon nanowire (SiNW) ensembles with vertical and zigzag architectures have been realized using wet chemical etching of bulk silicon wafers (p-Si(111) and p-Si(100)) with a mask of silver nanoparticles that are deposited by wet electroless deposition. The etching of SiNWs is based on subsequent treatments in chemical solutions such as 0.02 M aqueous solutions of silver nitrate (AgNO3) followed by 5 M hydrofluoric acid and 30% hydrogen peroxide (H2O2). The etching of the Si wafers is mediated by the reduction of silver on the silicon surface and in parallel by the oxidation of Si thereby forming SiO2 which is dissolved in the HF surroundings. The morphology of the starting silver (Ag) layer/Ag nanoparticles that form during processing on the Si wafer surfaces strongly influences the morphology of the SiNW ensembles and homogeneity of the etch profile. Our observations suggest that the Ag layer/Ag nanoparticles not only catalyze the wet chemical etching of silicon but also strongly catalyze the decomposit...

104 citations

Journal ArticleDOI
TL;DR: In this paper, the visible (red-orange) photoluminescence (PL) has been observed in silicon nanowires (SiNWs) that were realized by wet chemical etching of heavily (arsenic, As: ${10}^{20}\text{ }{\text{cm}}^{\ensuremath{-}3}$) and lowly doped (boron, B: ${ 10}^{15}\text
Abstract: Strong room temperature visible (red-orange) photoluminescence (PL) has been observed in silicon nanowires (SiNWs) that were realized by wet chemical etching of heavily (arsenic, As: ${10}^{20}\text{ }{\text{cm}}^{\ensuremath{-}3}$) and lowly doped (boron, B: ${10}^{15}\text{ }{\text{cm}}^{\ensuremath{-}3}$) single crystalline silicon (Si) wafers. Optical characterization of these SiNWs by PL combined with structural characterization by transmission and scanning electron microscopy strongly suggest that the visible PL at room temperature results from the rough SiNW sidewall structure that is composed of nanoscale features in which quantum confinement effects may occur.

98 citations

Journal ArticleDOI
TL;DR: The influence of microstructure and phase on optical (α-Fe 2 O 3 and Fe 3 O 4 ), gas sensing (SnO 2 ), and photocatalytic (TiO 2 ) properties was systematically studied to explore the potential of these coatings for technological applications.

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

Journal ArticleDOI
TL;DR: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching, and introduces templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithographic, and block-copolymer masks.
Abstract: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching. First, the basic process and mechanism of metal-assisted chemical etching is introduced. Then, the various influences of the noble metal, the etchant, temperature, illumination, and intrinsic properties of the silicon substrate (e.g., orientation, doping type, doping level) are presented. The anisotropic and the isotropic etching behaviors of silicon under various conditions are presented. Template-based metal-assisted chemical etching methods are introduced, including templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithography, and block-copolymer masks. The metal-assisted chemical etching of other semiconductors is also introduced. A brief introduction to the application of Si nanostructures obtained by metal-assisted chemical etching is given, demonstrating the promising potential applications of metal-assisted chemical etching. Finally, some open questions in the understanding of metal-assisted chemical etching are compiled.

1,689 citations

Journal ArticleDOI
TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Abstract: There are growing concerns over the environmental, climate, and health impacts caused by using non-renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium-ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid-electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.

1,365 citations

Journal ArticleDOI
TL;DR: The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Abstract: The use of silicon nanostructures in solar cells offers a number of benefits, such as the fact they can be used on flexible substrates. A silicon wire-array structure, containing reflecting nanoparticles for enhanced absorption, is now shown to achieve 96% peak absorption efficiency, capturing 85% of light with only 1% of the silicon used in comparable commercial cells. Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array’s volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit18 for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

1,346 citations

Journal ArticleDOI
TL;DR: Challenges Eun-Kyung Lim,†,‡,§ Taekhoon Kim, Soonmyung Paik, Seungjoo Haam, Yong-Min Huh,*,† and Kwangyeol Lee
Abstract: Challenges Eun-Kyung Lim,†,‡,§ Taekhoon Kim, Soonmyung Paik, Seungjoo Haam, Yong-Min Huh,*,† and Kwangyeol Lee* Department of Chemistry, Korea University, Seoul 136-701, Korea †Department of Radiology, Yonsei University, Seoul 120-752, Korea Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea Division of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea ‡BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea

998 citations