scispace - formally typeset
Search or ask a question
Author

Vladimir Stankovic

Bio: Vladimir Stankovic is an academic researcher from University of Strathclyde. The author has contributed to research in topics: Decoding methods & Forward error correction. The author has an hindex of 40, co-authored 255 publications receiving 4842 citations. Previous affiliations of Vladimir Stankovic include Universities UK & University of East Anglia.


Papers
More filters
Journal ArticleDOI
TL;DR: The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses, having the largest number of houses monitored in the United Kingdom at less than 1-minute intervals over aperiod greater than one year.
Abstract: Smart meter roll-outs provide easy access to granular meter measurements, enabling advanced energy services, ranging from demand response measures, tailored energy feedback and smart home/building automation. To design such services, train and validate models, access to data that resembles what is expected of smart meters, collected in a real-world setting, is necessary. The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses. During monitoring, the occupants were conducting their usual routines. At the time of publishing, the dataset has the largest number of houses monitored in the United Kingdom at less than 1-minute intervals over a period greater than one year. The dataset comprises 1,194,958,790 readings, that represent over 250,000 monitored appliance uses. The data is accessible in an easy-to-use comma-separated format, is time-stamped and cleaned to remove invalid measurements, correctly label appliance data and fill in small gaps of missing data.

279 citations

Journal ArticleDOI
TL;DR: A graph signal processing (GSP)-based approach for non-intrusive appliance load monitoring (NILM) that aims to address the large training overhead and associated complexity of conventional graph-based methods through a novel event-based graph approach.
Abstract: With the large-scale roll-out of smart metering worldwide, there is a growing need to account for the individual contribution of appliances to the load demand. In this paper, we design a graph signal processing (GSP)-based approach for non-intrusive appliance load monitoring (NILM), i.e., disaggregation of total energy consumption down to individual appliances used. Leveraging piecewise smoothness of the power load signal, two GSP-based NILM approaches are proposed. The first approach, based on total graph variation minimization, searches for a smooth graph signal under known label constraints. The second approach uses the total graph variation minimizer as a starting point for further refinement via simulated annealing. The proposed GSP-based NILM approach aims to address the large training overhead and associated complexity of conventional graph-based methods through a novel event-based graph approach. Simulation results using two datasets of real house measurements demonstrate the competitive performance of the GSP-based approaches with respect to traditionally used hidden Markov model-based and decision tree-based approaches.

238 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the design flexibility and UEP performance make EWF codes ideally suited for real-time scalable video multicast, i.e.,EWF codes offer a number of design parameters to be ldquotunedrdquo at the server side to meet the different reception criteria of heterogeneous receivers.
Abstract: Fountain codes were introduced as an efficient and universal forward error correction (FEC) solution for data multicast over lossy packet networks. They have recently been proposed for large scale multimedia content delivery in practical multimedia distribution systems. However, standard fountain codes, such as LT or Raptor codes, are not designed to meet unequal error protection (UEP) requirements typical in real-time scalable video multicast applications. In this paper, we propose recently introduced UEP expanding window fountain (EWF) codes as a flexible and efficient solution for real-time scalable video multicast. We demonstrate that the design flexibility and UEP performance make EWF codes ideally suited for this scenario, i.e., EWF codes offer a number of design parameters to be ldquotunedrdquo at the server side to meet the different reception criteria of heterogeneous receivers. The performance analysis using both analytical results and simulation experiments of H.264 scalable video coding (SVC) multicast to heterogeneous receiver classes confirms the flexibility and efficiency of the proposed EWF-based FEC solution.

166 citations

Journal ArticleDOI
TL;DR: The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering, and pattern matching in NALM and demonstrate the effectiveness of the proposed method for typical smart meter sampling rate.
Abstract: With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, also known as non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice, and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing an NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering, and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets—the US REDD data set with active power measurements downsampled to 1 min resolution and the UK REFIT data set with 8-s resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with the state-of-the-art supervised and unsupervised NALM approaches as benchmarks. 1 1 Part of this work was presented at IEEE GlobalSIP-2015 [1] . The REFIT dataset used to generate the results can be accessed via DOI 10.15129/31da3ece-f902-4e95-a093-e0a9536983c4.

165 citations

Journal ArticleDOI
TL;DR: This work addresses the problem of practical code design for general multiterminal lossless networks where multiple memoryless correlated binary sources are separately compressed and sent; each decoder receives a set of compressed sources and attempts to jointly reconstruct them.
Abstract: A Slepian-Wolf coding scheme for compressing two uniform memoryless binary sources using a single channel code that can achieve arbitrary rate allocation among encoders was outlined in the work of Pradhan and Ramchandran. Inspired by this work, we address the problem of practical code design for general multiterminal lossless networks where multiple memoryless correlated binary sources are separately compressed and sent; each decoder receives a set of compressed sources and attempts to jointly reconstruct them. First, we propose a near-lossless practical code design for the Slepian-Wolf system with multiple sources. For two uniform sources, if the code approaches the capacity of the channel that models the correlation between the sources, then the system will approach the theoretical limit. Thus, the great advantage of this design method is its possibility to approach the theoretical limits with a single channel code for any rate allocation among the encoders. Based on Slepian-Wolf code constructions, we continue with providing practical designs for the general lossless multiterminal network which consists of an arbitrary number of encoders and decoders. Using irregular repeat-accumulate and turbo codes in our designs, we obtain the best results reported so far and almost reach the theoretical bounds.

139 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations