scispace - formally typeset
Search or ask a question
Author

Vlassis Likodimos

Bio: Vlassis Likodimos is an academic researcher from National and Kapodistrian University of Athens. The author has contributed to research in topics: Electron paramagnetic resonance & Photocatalysis. The author has an hindex of 41, co-authored 159 publications receiving 4966 citations. Previous affiliations of Vlassis Likodimos include University of Pisa & National Technical University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a self-assembly technique with nonionic surfactant to control nanostructure and an inorganic sulfur source (i.e., H2SO4) was used to synthesize visible light-activated sulfur doped TiO2 nanocrystalline films.
Abstract: Visible light-activated sulfur doped TiO2 nanocrystalline films were synthesized by a sol–gel method based on the self-assembly technique with nonionic surfactant to control nanostructure and an inorganic sulfur source (i.e., H2SO4). The films were characterized by UV–vis diffuse reflectance, XRD, TEM, Raman, AFM, ESEM, XPS, FT-IR, EDX, EPR and porosimetry. The results showed that the physicochemical properties of the films, such as BET surface area, porosity, crystallite size and pore size distribution could be controlled by the calcination temperature. The highest surface area, smallest crystallite size and narrow pore size distribution were obtained for sulfur doped TiO2 films calcined at 350 °C, which exhibit very smooth surface with minimal roughness (

321 citations

Journal ArticleDOI
TL;DR: In this article, the reduced graphene oxide-TiO 2 composites (GOT) were evaluated as photocatalysts for the degradation of an important pharmaceutical water pollutant, diphenhydramine (DP), and an azo-dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation as a function of the graphene oxide (GO) content.
Abstract: Reduced graphene oxide–TiO 2 composites (GOT) were prepared by liquid phase deposition followed by post-thermal reduction at different temperatures. The composite materials were systematically evaluated as photocatalysts for the degradation of an important pharmaceutical water pollutant, diphenhydramine (DP), and an azo-dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation as a function of the graphene oxide (GO) content. A marked compositional dependence of the photocatalytic activity was evidenced for DP and MO pollutants degradation and mineralization under both UV/Vis and visible light. Especially under visible light, optimum photocatalytic performance was obtained for the composites treated at 200 °C comprising 3.3–4.0 wt.% GO, exceeding that of the benchmark P25 (Evonik) catalyst. According to scanning electron microscopy, Raman spectroscopy, and porosimetry analysis data, this was attributed to the optimal assembly and interfacial coupling between the reduced GO sheets and TiO 2 nanoparticles. Almost total degradation and significant mineralization of DP and MO pollutants (in less than 60 min) was achieved under near-UV/Vis irradiation for the optimum GOT composites. However, higher GO content and calcination temperatures (350 °C) led to detrimental effects due to the GO excess and the disruption of the GO–TiO 2 binding. Photocatalytic experiments employing sacrificial hole and radical scavenging agents revealed that photogenerated holes are the primary active species in DP degradation for both bare TiO 2 and GOT under UV/Vis irradiation, while an enhanced contribution of radical mediated DP oxidation was evidenced under visible light. These results combined with the distinct quenching of the GO photoluminescence under visible and NIR laser excitation, indicate that reduced GO acts either as electron acceptor or electron donor (sensitizer) of TiO 2 under UV and visible light, respectively. Fine-tuning of the reduced GO–TiO 2 interface is concluded as a very promising route to alleviate electron–hole recombination and circumvent the inherently poor light harvesting ability of TiO 2 in the visible range.

283 citations

Journal ArticleDOI
TL;DR: In this paper, a fluorosurfactant-based sol-gel approach was employed to enhance physicochemical properties and photocatalytic activity of immobilized nitrogen and fluorine co-doped TiO2 for the degradation of the hepatotoxin microcystin-LR (MC-LR).
Abstract: This study reports on the synthesis, characterization and environmental application of immobilized nitrogen and fluorine co-doped TiO2 (NF-TiO2) photocatalyst. A fluorosurfactant-based sol–gel approach was employed to enhance the physicochemical properties and photocatalytic activity of NF-TiO2 under visible and UV light for the degradation of the hepatotoxin microcystin-LR (MC-LR). The films were characterized by XRD, environmental scanning electron microscope (ESEM), TEM, AFM, EPR, micro-Raman, X-ray photoelectron spectroscope (XPS), UV–vis spectroscopy and porosimeter analysis. The results revealed that by modifying the molar ratio of the fluorosurfactant, we could effectively control the physicochemical properties and obtain films with high BET surface area and porosity, small crystallite size and narrow pore size distribution. UV–vis spectroscopy showed an increase in the absorption capacity of NF-TiO2 in the visible light range compared to reference films. The existence of interstitial nitrogen and substitutional fluorine in the titanium dioxide (TiO2) lattice was determined by XPS. Comparative EPR measurements between the co-doped and reference samples identified distinct N spin species in NF-TiO2, with a high sensitivity to visible light irradiation. The abundance of these paramagnetic centers verifies the formation of localized intra-gap states in TiO2 and implies synergistic effects between fluorine and nitrogen dopants. Micro-Raman spectroscopy showed the growth of small amounts of brookite concomitantly with the major anatase TiO2 phase, which could promote the system's photocatalytic activity through the formation of anatase/brookite heterojunctions. Analysis of the lower frequency Eg anatase Raman mode indicated the occurrence of size effects reflecting phonon confinement in the anatase nanocrystallites as well as deviations from stoichiometry due to structural defects in the co-doped sample. NF-TiO2 films effectively degraded MC-LR under visible and UV light compared to reference film. Similar MC-LR degradation rates under visible light after three cycles revealed high mechanical stability and no irreversible changes of the film during photocatalysis. This process has the potential of providing environmentally benign routes for drinking water treatment with solar powered photocatalytic systems.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the latest advances in the development of photonic crystal photocatalysts are highlighted, targeting primarily on the design, fabrication, structure-activity and performance evaluation of visible light activated (VLA) TiO2 inverse opals in the degradation of water and air pollutants as well as water splitting.
Abstract: Photonic crystals have been established as unique periodic structures to promote photon capture and control over light-matter interactions. Their application in semiconductor, mainly TiO2, photocatalysis has emerged as a promising structural modification to boost light harvesting of photocatalytic materials by means of slow photons i.e. light propagation at reduced group velocity near the edges of the photonic band gap (PBG). In this review, the latest advances in the development of TiO2 photonic crystal photocatalysts are highlighted, targeting primarily on the design, fabrication, structure-activity and performance evaluation of visible light activated (VLA) TiO2 inverse opals in the degradation of water and air pollutants as well as water splitting. Up to date work demonstrating the amplification effect of PBG engineered photonic crystals on the photocatalytic and photoelectrochemical performance under UV excitation is accordingly presented. Recent developments on the combination of enhanced light trapping, mainly via slow photons, mass transport and adsorption of macro/mesoporous inverse opals with targeted compositional and electronic modifications currently pursued to promote charge separation and visible light activation, i.e. dye sensitization, non-metal and self-doping, coupling with metallic nanoparticles and plasmonic effects, heterostructuring with narrow band gap semiconductors, quantum dots and graphene as well as the use of alternative metal oxide photocatalysts beyond TiO2 are thoroughly reviewed with respect to their potential for key improvements of the photocatalytic efficiency under visible light. Pertinent challenges and future prospects in photonic crystal-assisted VLA photocatalysts are addressed aimed at advanced photon management routes that could step up photocatalytic applications.

161 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of radical scavengers were employed to discriminate the roles of different reactive oxygen species (ROS) during visible light activated (VLA) photocatalysis using nitrogen and fluorine doped TiO2 (NF-TiO2) in the degradation of the hepatotoxin, microcystin-LR (MC-LR) in water.
Abstract: Although UV-induced TiO2 photocatalysis involves the generation of several reactive oxygen species (ROS), the formation of hydroxyl radicals are generally associated with the degradation of persistent organic contaminants in water. In this study, a variety of radical scavengers were employed to discriminate the roles of different ROS during visible light activated (VLA) photocatalysis using nitrogen and fluorine doped TiO2 (NF-TiO2) in the degradation of the hepatotoxin, microcystin-LR (MC-LR) in water. The addition of hydroxyl radical scavengers, methanol and tert-butyl alcohol to the reaction mixture resulted in negligible inhibition of VLA NF-TiO2 photocatalytic degradation of MCLR at pH 3.0 and only partial inhibition at pH 5.7. While hydroxyl radicals generally play the primary role in UV TiO2 photocatalysis, the minimal influence of MeOH and t-BuOH on the degradation process under these experimental conditions indicates hydroxyl radicals (•OH) do not play the primary role in VLA NF-TiO2 photocatalysis. However, strong inhibition was observed in VLA NF-TiO2 photocatalytic degradation of MC-LR in the presence of superoxide dismutase, benzoquinone and catalase at pH 3.0 and 5.7 indicating O2•- and H2O2 play critical roles in the degradation process. Similar degradation rates were observed in the presence of singlet oxygen scavenger, deuterium oxide, which enhances singlet oxygen mediated processes further suggesting singlet oxygen does not play a key role in the degradation of MCLR in these system. Formic acid and cupric nitrate were added to probe the roles of the valence band holes and conduction band electrons, respectively. Under UV+vis light irradiation, almost complete inhibition of MC-LR removal is observed with NF-TiO2 in the presence of •OH scavengers at pH 5.7. These results demonstrate that solution pH plays a major role in the formation and reactivities of ROS during VLA NF-TiO2 photocatalysis. The adsorption strength of the scavengers and MCLR onto NF-TiO2 as well as the speciation of the ROS as a function of pH need to be carefully considered since they also play a key role in the efficiency of the process. These results indicate the reduction of molecular oxygen by photo-generated electrons rather than hydroxyl radicals produced by oxidative reactions of photo-generated holes play a key role in the of VLA NF-TiO2 photocatalytic degradation of MC-LR.

150 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
TL;DR: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد لماش VB و ) رگید اب لاقتنا VB (CO2) .
Abstract: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد یژرنا زارت لماش VB و ) رگید زارت ی یژرنا اب ( ییاناسر راون مان هب نورتکلا زا یلاخ و رتلااب VB یم ) .دشاب ت ود نیا نیب یژرنا توافت یژرنا فاکش زار ، پگ دناب هدیمان یم .دوش هک ینامز زا نورتکلا لاقتنا VB هب VB یم ماجنا دریگ ، TiO2 اب ودح یژرنا بذج د ev 2 / 3 ، نورتکلا تفج کی دیلوت یم هرفح .دیامن و نورتکلا هرفح ی نا اب هدش دیلوت یم کرتشم حطس هب لاقت ثعاب دناوت شنکاو ماجنا اه یی ددرگ . TiO2 دربراک ،دراد یدایز یاه هلمج زا یم ناوت اوه یگدولآ هیفصت یارب (CO2) و بآ و ... نآ زا هدافتسا درک .

2,055 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications is presented.
Abstract: This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined with TiO2, produce a core–shell structure that reduces the combination rate. The limitations of ZnO-based DSCs are also discussed and several possible methods are proposed so as to expand the knowledge of ZnO to TiO2, motivating further improvement in the power-conversion efficiency of DSCs.

1,627 citations