scispace - formally typeset
Search or ask a question
Author

Vlasta Zavisova

Bio: Vlasta Zavisova is an academic researcher from Slovak Academy of Sciences. The author has contributed to research in topics: Magnetic nanoparticles & Liquid crystal. The author has an hindex of 20, co-authored 112 publications receiving 1281 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results indicated soft anchoring in the case of spherical magnetic particles and rigid anchoring for rodlike and chainlike magnetic particles, with parallel initial orientation between the magnetic moments of the magnetic particle and director.
Abstract: In this work the 4-(trans- 4'-n -hexylcyclohexyl)-isothiocyanatobenzene (6CHBT) liquid crystal was doped with differently shaped magnetite nanoparticles. The structural changes were observed by capacitance measurements and showed significant influence of the shape and size of the magnetic particles on the magnetic Freedericksz transition. For the volume concentration phi= 2 x 10(-4) of the magnetic particles, the critical magnetic field was established for the pure liquid crystal, and for liquid crystals doped with spherical, chainlike, and rodlike magnetic particles. The influence of the magnetic field depends on the type of anchoring, which is characterized by the density of anchoring energy and by the initial orientation between the liquid crystal molecules and the magnetic moment of the magnetic particles. The experimental results indicated soft anchoring in the case of spherical magnetic particles and rigid anchoring in the case of rodlike and chainlike magnetic particles, with parallel initial orientation between the magnetic moments of the magnetic particles and director.

126 citations

Journal ArticleDOI
TL;DR: In this article, a chitosan-stabilized iron oxide nanoparticles were used as contrast agents for MRI, and the results demonstrated the potential usefulness of the prepared nanoparticles as a contrast agent.

57 citations

Journal ArticleDOI
TL;DR: The toxicity of magnetite nanoparticles modified with bioavailable materials such as dextran, bovine serum albumin, polyethylene glycol, and polyvinylpyrrolidone was studied in normal and cancer cells as discussed by the authors.

52 citations

Journal ArticleDOI
TL;DR: It is found that MFBSAs are able to destroy amyloid fibrils in vitro, and it is assumed that the present findings represent a starting point for the application of the activeMFBSAs as therapeutic agents targeting insulin amyloidsosis.
Abstract: Pathogenesis of amyloid-related diseases is associated with the presence of protein amyloid deposits. Insulin amyloids have been reported in a patient with diabetes undergoing treatment by injection of insulin and causes problems in the production and storage of this drug and in pplication of insulin pumps. We have studied the interference of insulin amyloid fibrils with a series of 18 albumin magnetic fluids (MFBSAs) consisting of magnetite nanoparticles modified by different amounts of bovine serum albumin (w/w BSA/Fe₃O₄ from 0.005 up to 15). We have found that MFBSAs are able to destroy amyloid fibrils in vitro. The extent of fibril depolymerization was affected by nanoparticle physical-chemical properties (hydrodynamic diameter, zeta potential and isoelectric point) determined by the BSA amount present in MFBSAs. The most effective were MFBSAs with lower BSA/Fe₃O₄ ratios (from 0.005 to 0.1) characteristic of about 90% depolymerizing activity. For the most active magnetic fluids (ratios 0.01 and 0.02) the DC50 values were determined in the range of low concentrations, indicating their ability to interfere with insulin fibrils at stoichiometric concentrations. We assume that the present findings represent a starting point for the application of the active MFBSAs as therapeutic agents targeting insulin amyloidosis.

51 citations

Journal ArticleDOI
TL;DR: In this paper, a suspension of bacterial magnetosomes was investigated with respect to structural and magnetic properties and hyperthermic measurements and the mean particle diameter of about 35nm was confirmed by transmission electron microscopy (TEM), X-ray and magnetic analysis.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Abstract: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,†,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,† †Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Universite ́ Paris-Sud XI, UMR CNRS 8612, Faculte ́ de Pharmacie, IFR 141, 5 rue Jean-Baptiste Cleḿent, F-92296 Chat̂enay-Malabry, France Departamento de Farmacia y Tecnología Farmaceútica, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain ‡Pharmaceutical Sciences Department, Sanofi, 13 Quai Jules Guesdes, F-94403 Vitry-sur-Seine, France

1,705 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics aspects of the new research thrusts, in which liquid crystals often meet other types of soft condensed matter, such as polymers and colloidal nano- or microparticle dispersions.

587 citations

Journal ArticleDOI
TL;DR: This tutorial review describes the recent and significant developments in liquid-crystal nanoscience embracing contemporary nanomaterials such as nanoparticles, nanorods, nanotubes, nanoplatelets, etc.
Abstract: Liquid crystals are finding increasing applications in a wide variety of fields including liquid-crystal display technology, materials science, bioscience, etc., apart from acting as prototype self-organizable supramolecular soft materials and tunable solvents. Recently, keeping in pace with topical science, liquid crystals have entered into the fascinating domains of nanoscience and nanotechnology. This tutorial review describes the recent and significant developments in liquid-crystal nanoscience embracing contemporary nanomaterials such as nanoparticles, nanorods, nanotubes, nanoplatelets, etc. The dispersion of zero-, one- and two-dimensional nanomaterials in liquid crystals for the enhancement of properties, liquid-crystalline phase behavior of nanomaterials themselves, self-assembly and alignment of nanomaterials in liquid-crystalline media, and the synthesis of nanomaterials by using liquid crystals as ‘templates’ or ‘precursors’ have been highlighted and discussed. It is almost certain that the ‘fourth state of matter’ will play more prevalent roles in nanoscience and nanotechnology in the near future. Moreover, liquid-crystal nanoscience reflects itself as a beautiful demonstration of the contemporary theme “crossing the borders: science without boundaries”.

434 citations

Journal ArticleDOI
TL;DR: Recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within or at the surface of a nanoparticle.
Abstract: There is currently considerable effort to incorporate both diagnostic and therapeutic functions into a single nanoscale system for the more effective treatment of cancer. Nanoparticles have great potential to achieve such dual functions, particularly if more than one type of nanostructure can be incorporated in a nanoassembly, referred to in this review as a hybrid nanoparticle. Here we review recent developments in the synthesis and evaluation of such hybrid nanoparticles based on two design strategies (barge vs. tanker), in which liposomal, micellar, porous silica, polymeric, viral, noble metal, and nanotube systems are incorporated either within (barge) or at the surface of (tanker) a nanoparticle. We highlight the design factors that should be considered to obtain effective nanodevices for cancer detection and treatment.

422 citations