scispace - formally typeset
Search or ask a question
Author

Vojislav B. Misic

Bio: Vojislav B. Misic is an academic researcher from Ryerson University. The author has contributed to research in topics: Wireless sensor network & Network packet. The author has an hindex of 32, co-authored 312 publications receiving 3760 citations. Previous affiliations of Vojislav B. Misic include University of Belgrade & University of Winnipeg.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel approximate analytical model is described that allows cloud operators to determine the relationship between the number of servers and input buffer size and the performance indicators such as mean number of tasks in the system, blocking probability, and probability that a task will obtain immediate service.
Abstract: Successful development of cloud computing paradigm necessitates accurate performance evaluation of cloud data centers. As exact modeling of cloud centers is not feasible due to the nature of cloud centers and diversity of user requests, we describe a novel approximate analytical model for performance evaluation of cloud server farms and solve it to obtain accurate estimation of the complete probability distribution of the request response time and other important performance indicators. The model allows cloud operators to determine the relationship between the number of servers and input buffer size, on one side, and the performance indicators such as mean number of tasks in the system, blocking probability, and probability that a task will obtain immediate service, on the other.

387 citations

Journal ArticleDOI
TL;DR: The analysis of Stability of the network queues shows that the stability of the downlink queue at the coordinator is the most critical for network operation, and shows that certain features prescribed by the standard actually limit the performance of 802.15.4 networks.
Abstract: The performance of an IEEE 802.15.4 compliant network operating in the beacon enabled mode with both downlink and uplink traffic is analyzed through discrete time Markov chains and the theory of M/G/1 queues. The model considers acknowledged transmissions and includes the impact of different network and traffic parameters such as the packet arrival rate, packet size, inactive period between the beacons, and the number of stations. We investigate the nonsaturation region and outline the conditions under which the network abruptly goes to saturation. The analysis of stability of the network queues shows that the stability of the downlink queue at the coordinator is the most critical for network operation. Due to the abruptness with which the switch from nonsaturation to saturation occurs, the network operating point has to be carefully chosen according to the volume of downlink traffic. Furthermore, our model shows that certain features prescribed by the standard actually limit the performance of 802.15.4 networks.

169 citations

Journal ArticleDOI
TL;DR: A blockchain-assisted lightweight anonymous authentication (BLA) mechanism for distributed VFS, which is provisioned to driving vehicles, and achieves anonymity, and granting vehicle users the responsibility of preserving their privacy by effectively combining modern cryptographical technology and blockchain technology.
Abstract: As modern vehicles and distributed fog services advance apace, vehicular fog services (VFSs) are being expected to span across multiple geo-distributed datacenters, which inevitably leads to cross-datacenter authentication. Traditional cross-datacenter authentication models are not suitable for the scenario of high-speed moving vehicles accessing VFS, because these models either ignored user privacy or ignored the delay requirement of driving vehicles. This paper proposes a blockchain-assisted lightweight anonymous authentication (BLA) mechanism for distributed VFS, which is provisioned to driving vehicles. BLA can achieve the following advantages: 1) realizing a flexible cross-datacenter authentication, in which a vehicle can decide whether to be reauthenticated or not when it enters a new vehicular fog datacenter; 2) achieving anonymity, and granting vehicle users the responsibility of preserving their privacy; 3) it is lightweight by achieving noninteractivity between vehicles and service managers (SMs), and eliminating the communication between SMs in the authentication process, which significantly reduces the communication delay; and 4) resisting the attack that the database governed by one center is tampered with. BLA achieves these advantages by effectively combining modern cryptographical technology and blockchain technology. These security features are demonstrated by carrying out security analysis. Meanwhile, extensive simulations are conducted to validate the efficiency and practicality of BLA.

147 citations

Journal ArticleDOI
TL;DR: The results indicate that, in general, TDD has a small positive effect on quality but little to no discernible effect on productivity.
Abstract: This paper provides a systematic meta-analysis of 27 studies that investigate the impact of Test-Driven Development (TDD) on external code quality and productivity. The results indicate that, in general, TDD has a small positive effect on quality but little to no discernible effect on productivity. However, subgroup analysis has found both the quality improvement and the productivity drop to be much larger in industrial studies in comparison with academic studies. A larger drop of productivity was found in studies where the difference in test effort between the TDD and the control group's process was significant. A larger improvement in quality was also found in the academic studies when the difference in test effort is substantial; however, no conclusion could be derived regarding the industrial studies due to the lack of data. Finally, the influence of developer experience and task size as moderator variables was investigated, and a statistically significant positive correlation was found between task size and the magnitude of the improvement in quality.

115 citations

Journal ArticleDOI
01 Sep 2005
TL;DR: The operation of a personal area network, operating under the IEEE Standard 802.15.4 in the beacon enabled mode, is analyzed using the theory of discrete time Markov chains and M/G/1/K queues to derive several important performance parameters such as probability of access, probability that medium is idle, queue length distribution in the device, and probability distribution of the packet service time.
Abstract: The operation of a personal area network, operating under the IEEE Standard 802.15.4 in the beacon enabled mode, is analyzed using the theory of discrete time Markov chains and M/G/1/K queues. The model includes the impact of different parameters such as packet arrival rate, number of stations, station's buffer size, packet size, and inactive period between the beacons. We have derived several important performance parameters such as probability of access, probability that medium is idle, queue length distribution in the device, and probability distribution of the packet service time. Some important conclusions regarding the implementation of 802.15.4 networks and compatible network devices are outlined.

111 citations


Cited by
More filters
Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations