scispace - formally typeset
Search or ask a question
Author

Vojkan Jaksic

Bio: Vojkan Jaksic is an academic researcher from McGill University. The author has contributed to research in topics: Entropy production & Quantum statistical mechanics. The author has an hindex of 32, co-authored 107 publications receiving 3062 citations. Previous affiliations of Vojkan Jaksic include University of Ottawa & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics and introduce notions of entropy production and heat fluxes, and study their properties in a model of a small finite quantum system coupled to several independent thermal reservoirs.
Abstract: We review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics recently proposed in refs 1–7 In the algebraic formalism of quantum statistical mechanics we introduce notions of non-equilibrium steady states, entropy production and heat fluxes, and study their properties Our basic paradigm is a model of a small (finite) quantum system coupled to several independent thermal reservoirs We exhibit examples of such systems which have strictly positive entropy production

145 citations

Journal ArticleDOI
TL;DR: In this article, the dynamics of an N-level system linearly coupled to a field of massless bosons at positive temperature were investigated using complex deformation techniques, and time-dependent perturbation theory was developed.
Abstract: We investigate the dynamics of anN-level system linearly coupled to a field of mass-less bosons at positive temperature. Using complex deformation techniques, we develop time-dependent perturbation theory and study spectral properties of the total Hamiltonian. We also calculate the lifetime of resonances to second order in the coupling.

139 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the non-equilibrium statistical mechanics of a 2-level quantum system coupled to two independent free Fermi reservoirs, which are in thermal equilibrium at inverse temperatures β1≠β2.
Abstract: We study the non-equilibrium statistical mechanics of a 2-level quantum system, ?, coupled to two independent free Fermi reservoirs ?1, ?2, which are in thermal equilibrium at inverse temperatures β1≠β2. We prove that, at small coupling, the combined quantum system ?+?1+?2 has a unique non-equilibrium steady state (NESS) and that the approach to this NESS is exponentially fast. We show that the entropy production of the coupled system is strictly positive and relate this entropy production to the heat fluxes through the system.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the location and multiplicity of the singular spectrum of the Pauli-Fierz operators of a small quantum system with a bosonic free field were studied.

134 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamics of a 2-level atom coupled to a massless bosonic field at positive temperature and proved that, at small coupling, the combined quantum system approaches thermal equilibrium.
Abstract: We investigate the dynamics of a 2-level atom (or spin 1/2) coupled to a mass-less bosonic field at positive temperature. We prove that, at small coupling, the combined quantum system approaches thermal equilibrium. Moreover we establish that this approach is exponentially fast in time. We first reduce the question to a spectral problem for the Liouvillean, a self-adjoint operator naturally associated with the system. To compute this operator, we invoke Tomita-Takesaki theory. Once this is done we use complex deformation techniques to study its spectrum. The corresponding zero temperature model is also reviewed and compared. From a more philosophical point of view our results show that, contrary to the conventional wisdom, quantum dynamics can be simpler at positive than at zero temperature.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations