scispace - formally typeset
Search or ask a question
Author

Vojkan Mihajlovic

Other affiliations: University of Twente, Philips
Bio: Vojkan Mihajlovic is an academic researcher from IMEC. The author has contributed to research in topics: XML database & XML. The author has an hindex of 22, co-authored 78 publications receiving 1379 citations. Previous affiliations of Vojkan Mihajlovic include University of Twente & Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: This work discussed state-of-the-art in wireless and wearable EEG solutions and a number of aspects where such solutions require improvements when handling electrical activity of the brain, including personal traits and sensory inputs, brain signal generation and acquisition, brain sign analysis, and feedback generation.
Abstract: Monitoring human brain activity has great potential in helping us understand the functioning of our brain, as well as in preventing mental disorders and cognitive decline and improve our quality of life. Noninvasive surface EEG is the dominant modality for studying brain dynamics and performance in real-life interaction of humans with their environment. To take full advantage of surface EEG recordings, EEG technology has to be advanced to a level that it can be used in daily life activities. Furthermore, users have to see it as an unobtrusive option to monitor and improve their health. To achieve this, EEG systems have to be transformed from stationary, wired, and cumbersome systems used mostly in clinical practice today, to intelligent wearable, wireless, convenient, and comfortable lifestyle solutions that provide high signal quality. Here, we discuss state-of-the-art in wireless and wearable EEG solutions and a number of aspects where such solutions require improvements when handling electrical activity of the brain. We address personal traits and sensory inputs, brain signal generation and acquisition, brain signal analysis, and feedback generation. We provide guidelines on how these aspects can be advanced further such that we can develop intelligent wearable, wireless, lifestyle EEG solutions. We recognized the following aspects as the ones that need rapid research progress: application driven design, end-user driven development, standardization and sharing of EEG data, and development of sophisticated approaches to handle EEG artifacts.

232 citations

Journal ArticleDOI
10 Dec 2014-Sensors
TL;DR: Dry electrodes offering high user comfort are presented, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication, and EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results.
Abstract: Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ~10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes.

158 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: In this paper, the use of dynamic Bayesian networks (DBN) for automatically inferring semantics from raw video data becomes significant, and a robust audiovisual feature extraction scheme and a text recognition and detection method are presented.
Abstract: As amounts of publicly available video data grow, the need to automatically infer semantics from raw video data becomes significant. In this paper, we focus on the use of dynamic Bayesian networks (DBN) for that purpose, and demonstrate how they can be effectively applied for fusing the evidence obtained from different media information sources. The approach is validated in the particular domain of Formula I race videos. For that specific domain we introduce a robust audiovisual feature extraction scheme and a text recognition and detection method. Based on numerous experiments performed with DBN, we give some recommendations with respect to the modeling of temporal and atemporal dependences within the network. Finally, we present the experimental results for the detection of excited speech and the extraction of highlights, as well as the advantageous query capabilities of our system.

63 citations

Journal ArticleDOI
TL;DR: Overall, results suggest that self-guided alpha activity training using this novel system is feasible and represents a step forward in the ease of instrumental conditioning of brain rhythms.
Abstract: Fifty healthy participants took part in a double-blind placebo-controlled study in which they were either given auditory alpha activity (8–12 Hz) training (N = 18), random beta training (N = 12), or no training at all (N = 20). A novel wireless electrode system was used for training without instructions, involving water-based electrodes mounted in an audio headset. Training was applied approximately at central electrodes. Post-training measurement using a conventional full-cap EEG system revealed a 10% increase in alpha activity at posterior sites compared to pre-training levels, when using the conventional index of alpha activity and a non-linear regression fit intended to model individual alpha frequency. This statistically significant increase was present only in the group that received the alpha training, and remained evident at a 3 month follow-up session, especially under eyes open conditions where an additional 10% increase was found. In an exit interview, approximately twice as many participants in the alpha training group (53%) mentioned that the training was relaxing, compared to those in either the beta (20%) or no training (21%) control groups. Behavioural measures of stress and relaxation were indicative of effects of alpha activity training but failed to reach statistical significance. These results are discussed in terms of a lack of statistical power. Overall, results suggest that self-guided alpha activity training using this novel system is feasible and represents a step forward in the ease of instrumental conditioning of brain rhythms.

62 citations


Cited by
More filters
Book
10 Dec 1997

2,025 citations

01 Mar 1995
TL;DR: This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series and results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages.
Abstract: : This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series. Two approaches to feature selection are used. First, a subset enumeration method is used to determine which financial indicators are most useful for aiding in prediction of the S&P 500 futures daily price. The candidate indicators evaluated include RSI, Stochastics and several moving averages. Results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages. The second approach to feature selection is calculation of individual saliency metrics. A new decision boundary-based individual saliency metric, and a classifier independent saliency metric are developed and tested. Ruck's saliency metric, the decision boundary based saliency metric, and the classifier independent saliency metric are compared for a data set consisting of the RSI and Stochastics indicators as well as delayed closing price values. The decision based metric and the Ruck metric results are similar, but the classifier independent metric agrees with neither of the other metrics. The nine most salient features, determined by the decision boundary based metric, are used to train a neural network and the results are presented and compared to other published results. (AN)

1,545 citations

Journal ArticleDOI
TL;DR: The steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation are investigated and future research directions related to basic and applied aspects of SSVEPs are outlined.
Abstract: After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.

898 citations

Journal ArticleDOI
TL;DR: The purpose of this article is to provide a systematic classification of various ideas and techniques proposed towards the effective abstraction of video contents, and identify and detail, for each approach, the underlying components and how they are addressed in specific works.
Abstract: The demand for various multimedia applications is rapidly increasing due to the recent advance in the computing and network infrastructure, together with the widespread use of digital video technology. Among the key elements for the success of these applications is how to effectively and efficiently manage and store a huge amount of audio visual information, while at the same time providing user-friendly access to the stored data. This has fueled a quickly evolving research area known as video abstraction. As the name implies, video abstraction is a mechanism for generating a short summary of a video, which can either be a sequence of stationary images (keyframes) or moving images (video skims). In terms of browsing and navigation, a good video abstract will enable the user to gain maximum information about the target video sequence in a specified time constraint or sufficient information in the minimum time. Over past years, various ideas and techniques have been proposed towards the effective abstraction of video contents. The purpose of this article is to provide a systematic classification of these works. We identify and detail, for each approach, the underlying components and how they are addressed in specific works.

879 citations

Journal ArticleDOI
TL;DR: The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives, and various EEG decoding algorithms and classification methods are evaluated.
Abstract: Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.

475 citations