scispace - formally typeset
Search or ask a question
Author

Vojtěch Spurný

Bio: Vojtěch Spurný is an academic researcher from Czech Technical University in Prague. The author has contributed to research in topics: Mobile robot & Treasure. The author has an hindex of 3, co-authored 3 publications receiving 63 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The failure recovery and synchronization job manager is used to integrate all the presented subtasks together and also to decrease the vulnerability to individual subtask failures in real‐world conditions.

81 citations

Book ChapterDOI
09 Sep 2013
TL;DR: The presented approach enables to integrate a prediction of behaviour of moving objects in robots’ workspace into a formation stabilization and navigation framework and it will be shown that such an inclusion of a model of the surrounding environment directly into the formation control mechanisms facilitates avoidance manoeuvres in a case of fast dynamic objects approaching in a collision course.
Abstract: A formation driving mechanism suited for utilization of multi-robot teams in highly dynamic environments is proposed in this paper. The presented approach enables to integrate a prediction of behaviour of moving objects in robots’ workspace into a formation stabilization and navigation framework. It will be shown that such an inclusion of a model of the surrounding environment directly into the formation control mechanisms facilitates avoidance manoeuvres in a case of fast dynamic objects approaching in a collision course. Besides, the proposed model predictive control based approach enables to stabilize robots in a compact formation and it provides a failure tolerance mechanism with an inter collision avoidance. The abilities of the algorithm are verified via numerous simulations and hardware experiments with the main focus on evaluation of performance of the algorithm with different sensing capabilities of the robotic system.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel control system in which a Model Predictive Controller is used in real time to generate a reference trajectory for the UAV, which are then tracked by the nonlinear feedback controller allows to track predictions of the car motion with minimal position error.
Abstract: This paper addresses the perception, control and trajectory planning for an aerial platform to identify and land on a moving car at 15 km/h. The hexacopter Unmanned Aerial Vehicle (UAV), equipped with onboard sensors and a computer, detects the car using a monocular camera and predicts the car future movement using a nonlinear motion model. While following the car, the UAV lands on its roof, and it attaches itself using magnetic legs. The proposed system is fully autonomous from takeoff to landing. Numerous field tests were conducted throughout the year-long development and preparations for the MBZIRC 2017 competition, for which the system was designed. We propose a novel control system in which a Model Predictive Controller is used in real time to generate a reference trajectory for the UAV, which are then tracked by the nonlinear feedback controller. This combination allows to track predictions of the car motion with minimal position error. The evaluation presents three successful autonomous landings during the MBZIRC 2017, where our system achieved the fastest landing among all competing teams. ∗http://mrs.felk.cvut.cz †http://www.grasp.upenn.edu

90 citations

Book ChapterDOI
29 Oct 2019
TL;DR: A description of the multi-robot heterogeneous exploration system of the CTU-CRAS team, which scored third place in the Tunnel Circuit round, surpassing the performance of all other non-DARPA-funded competitors.
Abstract: The Subterranean Challenge (SubT) is a contest organised by the Defense Advanced Research Projects Agency (DARPA). The contest reflects the requirement of increasing safety and efficiency of underground search-and-rescue missions. In the SubT challenge, teams of mobile robots have to detect, localise and report positions of specific objects in an underground environment. This paper provides a description of the multi-robot heterogeneous exploration system of our CTU-CRAS team, which scored third place in the Tunnel Circuit round, surpassing the performance of all other non-DARPA-funded competitors. In addition to the description of the platforms, algorithms and strategies used, we also discuss the lessons-learned by participating at such contest.

85 citations

Journal ArticleDOI
25 Feb 2020
TL;DR: This work presents a review and discussion of the challenges that must be solved in order to successfully develop swarms of Micro Air Vehicles (MAVs) for real world operations, and extracts constraints and links that relate the local level MAV capabilities to the global operations of the swarm.
Abstract: This work presents a review and discussion of the challenges that must be solved in order to successfully develop swarms of Micro Air Vehicles (MAVs) for real world operations. From the discussion, we extract constraints and links that relate the local level MAV capabilities to the global operations of the swarm. These should be taken into account when designing swarm behaviors in order to maximize the utility of the group. At the lowest level, each MAV should operate safely. Robustness is often hailed as a pillar of swarm robotics, and a minimum level of local reliability is needed for it to propagate to the global level. An MAV must be capable of autonomous navigation within an environment with sufficient trustworthiness before the system can be scaled up. Once the operations of the single MAV are sufficiently secured for a task, the subsequent challenge is to allow the MAVs to sense one another within a neighborhood of interest. Relative localization of neighbors is a fundamental part of self-organizing robotic systems, enabling behaviors ranging from basic relative collision avoidance to higher level coordination. This ability, at times taken for granted, also must be sufficiently reliable. Moreover, herein lies a constraint: the design choice of the relative localization sensor has a direct link to the behaviors that the swarm can (and should) perform. Vision-based systems, for instance, force MAVs to fly within the field of view of their camera. Range or communication-based solutions, alternatively, provide omni-directional relative localization, yet can be victim to unobservable conditions under certain flight behaviors, such as parallel flight, and require constant relative excitation. At the swarm level, the final outcome is thus intrinsically influenced by the on-board abilities and sensors of the individual. The real-world behavior and operations of an MAV swarm intrinsically follow in a bottom-up fashion as a result of the local level limitations in cognition, relative knowledge, communication, power, and safety. Taking these local limitations into account when designing a global swarm behavior is key in order to take full advantage of the system, enabling local limitations to become true strengths of the swarm.

79 citations

Journal ArticleDOI
04 Feb 2020
TL;DR: Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue, and hence can be used for search and rescue purposes.
Abstract: Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed.

66 citations

Journal ArticleDOI
TL;DR: This work proposes a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously, which enables complex missions in GNSS and GNSS-denied environments.
Abstract: We present a multirotor Unmanned Aerial Vehicle control (UAV) and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the CTU in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA SubT challenge. Each time, our team was able to secure top places among the best competitors from all over the world. On each occasion, the challenges has motivated the team to improve the system and to gain a great amount of high-quality experience within tight deadlines.

63 citations