scispace - formally typeset
Search or ask a question
Author

Volker Braun

Bio: Volker Braun is an academic researcher from Nokia. The author has contributed to research in topics: Cellular network. The author has an hindex of 1, co-authored 1 publications receiving 21 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the major design aspects of such a cellular joint communication and sensing (JCAS) system are discussed, and an analysis of the choice of the waveform that points towards choosing the one that is best suited for communication also for radar sensing is presented.
Abstract: The 6G vision of creating authentic digital twin representations of the physical world calls for new sensing solutions to compose multi-layered maps of our environments. Radio sensing using the mobile communication network as a sensor has the potential to become an essential component of the solution. With the evolution of cellular systems to mmWave bands in 5G and potentially sub-THz bands in 6G, small cell deployments will begin to dominate. Large bandwidth systems deployed in small cell configurations provide an unprecedented opportunity to employ the mobile network for sensing. In this paper, we focus on the major design aspects of such a cellular joint communication and sensing (JCAS) system. We present an analysis of the choice of the waveform that points towards choosing the one that is best suited for communication also for radar sensing. We discuss several techniques for efficiently integrating the sensing capability into the JCAS system, some of which are applicable with NR air-interface for evolved 5G systems. Specifically, methods for reducing sensing overhead by appropriate sensing signal design or by configuring separate numerologies for communications and sensing are presented. Sophisticated use of the sensing signals is shown to reduce the signaling overhead by a factor of 2.67 for an exemplary road traffic monitoring use case. We then present a vision for future advanced JCAS systems building upon distributed massive MIMO and discuss various other research challenges for JCAS that need to be addressed in order to pave the way towards natively integrated JCAS in 6G.

223 citations


Cited by
More filters
Posted Content
TL;DR: In this paper, the authors provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC).
Abstract: As the standardization of 5G is being solidified, researchers are speculating what 6G will be. Integrating sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing to exploit the dense cell infrastructure of 5G for constructing a perceptive network. In this paper, we provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider multiple facets of ISAC and its performance gains. By introducing both ongoing and potential use cases, we shed light on industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits, tradeoffs in physical layer performance, to the tradeoff in cross-layer designs. Next, we discuss signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., communication-assisted sensing and sensing-assisted communications. Finally, we summarize the paper by identifying the potential integration between ISAC and other emerging communication technologies, and their positive impact on the future of wireless networks.

181 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC).
Abstract: As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Communications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks.

177 citations

Journal ArticleDOI
23 Jun 2022-Sensors
TL;DR: This paper provides an overview of network-based positioning, from the basics to advanced, state-of-the-art machine-learning-supported solutions, and makes a leap towards positioning with 6G networks.
Abstract: Determining the position of ourselves or our assets has always been important to humans. Technology has helped us, from sextants to outdoor global positioning systems, but real-time indoor positioning has been a challenge. Among the various solutions, network-based positioning became an option with the arrival of 5G mobile networks. The new radio technologies, minimized end-to-end latency, specialized control protocols, and booming computation capacities at the network edge offered the opportunity to leverage the overall capabilities of the 5G network for positioning—indoors and outdoors. This paper provides an overview of network-based positioning, from the basics to advanced, state-of-the-art machine-learning-supported solutions. One of the main contributions is the detailed comparison of machine learning techniques used for network-based positioning. Since new requirements are already in place for 6G networks, our paper makes a leap towards positioning with 6G networks. In order to also highlight the practical side of the topic, application examples from different domains are presented with a special focus on industrial and vehicular scenarios.

29 citations

Posted Content
TL;DR: In this article, a comprehensive survey of the evolution of non-terrestrial networks (NTNs) highlighting its relevance to 5G networks and how it will play a pivotal role in the development of 6G and beyond wireless networks is presented.
Abstract: Non-terrestrial networks (NTNs) traditionally had certain limited applications. However, the recent technological advancements opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting its relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G and beyond wireless networks. The survey discusses important features of NTNs integration into TNs by delving into the new range of services and use cases, various architectures, and new approaches being adopted to develop a new wireless ecosystem. Our survey includes the major progresses and outcomes from academic research as well as industrial efforts. We first start with introducing the relevant 5G use cases and general integration challenges such as handover and deployment difficulties. Then, we review the NTNs operations in mmWave and their potential for the internet of things (IoT). Further, we discuss the significance of mobile edge computing (MEC) and machine learning (ML) in NTNs by reviewing the relevant research works. Furthermore, we also discuss the corresponding higher layer advancements and relevant field trials/prototyping at both academic and industrial levels. Finally, we identify and review 6G and beyond application scenarios, novel architectures, technological enablers, and higher layer aspects pertinent to NTNs integration.

26 citations

Journal ArticleDOI
TL;DR: An overview of state-of-the-art modulation schemes for RadCom systems, namely, chirp sequence, phase-modulated continuous wave, orthogonal frequency-division multiplexing, and orthogonality-chirp division multiplexer, is presented in this paper .
Abstract: The joint radar-communication (RadCom) concept has been continuously gaining interest due to the possibility of integrating radar sensing and communication functionalities in the same radio frequency hardware platform. Besides a number of challenges in terms of hardware design and signal processing, the choice of suitable modulation schemes plays a significant role in driving the performance of RadCom systems. In this sense, this article presents an overview of state-of-the-art modulation schemes for RadCom systems, namely, chirp sequence, phase-modulated continuous wave, orthogonal frequency-division multiplexing, and orthogonal chirp-division multiplexing. For each of them, a detailed system model is outlined, and parameters for quantifying both radar and communication performances are presented. Finally, a comparative analysis of the aforementioned RadCom modulation schemes is carried out to illustrate the presented discussion.

26 citations