scispace - formally typeset
Search or ask a question
Author

Volker Kiessling

Bio: Volker Kiessling is an academic researcher from University of Virginia. The author has contributed to research in topics: Lipid bilayer fusion & Lipid bilayer. The author has an hindex of 25, co-authored 59 publications receiving 2573 citations. Previous affiliations of Volker Kiessling include Max Planck Society & Martin Luther University of Halle-Wittenberg.


Papers
More filters
Journal ArticleDOI
TL;DR: A range of recent experiments are reviewed that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.

250 citations

Journal ArticleDOI
TL;DR: The diffusion of lipids is similar in l(o) and liquid-disordered phase domains and is not affected by transbilayer coupling, indicating that lateral and transverse lipid interactions that give rise to the domain structure are weak in the biological lipid mixtures that were employed in this work.

221 citations

Journal ArticleDOI
TL;DR: Recent advances on how this situation can be recreated in a supported bilayer format are summarized and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet of mammalian plasma membranes are summarized.

207 citations

Journal ArticleDOI
TL;DR: Fluorescence interference-contrast (FLIC) microscopy is a powerful new technique to measure vertical distances from reflective surfaces and the distance of a membrane-bound protein from the membrane surface was measured, indicating an upright orientation of the rod-shaped t-SNARE/v- SNARE complex from the membranes surface.

188 citations

Journal ArticleDOI
TL;DR: These structures may be combined with new knowledge on the fusion of pure lipid bilayer membranes in an attempt to begin to piece together the complex puzzle of how biological membrane fusion machines operate on membranes.

183 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functions of their individual membranes?
Abstract: Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?

5,720 citations

Journal ArticleDOI
TL;DR: A fascinating picture of these robust nanomachines is emerging, which seems to be conserved and adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission.
Abstract: Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.

2,424 citations

Journal ArticleDOI
TL;DR: This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products.

1,560 citations

Journal ArticleDOI
TL;DR: The membrane raft hypothesis formalized a physicochemical principle for a subtype of lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed membrane domains that selectively recruit certain lipids and proteins.
Abstract: Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

1,349 citations