scispace - formally typeset
Search or ask a question
Author

Volker Mai

Bio: Volker Mai is an academic researcher from University of Florida. The author has contributed to research in topics: Gut flora & Necrotizing enterocolitis. The author has an hindex of 37, co-authored 104 publications receiving 5678 citations. Previous affiliations of Volker Mai include University of Texas MD Anderson Cancer Center & Emerging Pathogens Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: It is hypothesized that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents, which would have an impact on plant, animal and human health.

571 citations

Journal ArticleDOI
TL;DR: A standardized DNA extraction method for human fecal samples is recommended, for which transferability across labs was established and which was further benchmarked using a mock community of known composition to improve comparability of human gut microbiome studies and facilitate meta-analyses.
Abstract: Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.

516 citations

Journal ArticleDOI
06 Jun 2011-PLOS ONE
TL;DR: The authors' observations suggest that abnormal patterns of microbiota and potentially a novel pathogen contribute to the etiology of NEC, a common disease in preterm infants.
Abstract: Intestinal luminal microbiota likely contribute to the etiology of necrotizing enterocolitis (NEC), a common disease in preterm infants. Microbiota development, a cascade of initial colonization events leading to the establishment of a diverse commensal microbiota, can now be studied in preterm infants using powerful molecular tools. Starting with the first stool and continuing until discharge, weekly stool specimens were collected prospectively from infants with gestational ages ≤32 completed weeks or birth weights≤1250 g. High throughput 16S rRNA sequencing was used to compare the diversity of microbiota and the prevalence of specific bacterial signatures in nine NEC infants and in nine matched controls. After removal of short and low quality reads we retained a total of 110,021 sequences. Microbiota composition differed in the matched samples collected 1 week but not <72 hours prior to NEC diagnosis. We detected a bloom (34% increase) of Proteobacteria and a decrease (32%) in Firmicutes in NEC cases between the 1 week and <72 hour samples. No significant change was identified in the controls. At both time points, molecular signatures were identified that were increased in NEC cases. One of the bacterial signatures detected more frequently in NEC cases (p<0.01) matched closest to γ-Proteobacteria. Although this sequence grouped to the well-studied Enterobacteriaceae family, it did not match any sequence in Genbank by more than 97%. Our observations suggest that abnormal patterns of microbiota and potentially a novel pathogen contribute to the etiology of NEC.

441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used high-density Roche 454 pyrosequencing to survey the distal gut microbiota for 39 individuals with CDI, 36 subjects with C. difficile-negative nosocomial diarrhea (CDN), and 40 healthy control subjects.
Abstract: Clostridium difficile infection (CDI) causes nearly half a million cases of diarrhea and colitis in the United States each year. Although the importance of the gut microbiota in C. difficile pathogenesis is well recognized, components of the human gut flora critical for colonization resistance are not known. Culture-independent high-density Roche 454 pyrosequencing was used to survey the distal gut microbiota for 39 individuals with CDI, 36 subjects with C. difficile-negative nosocomial diarrhea (CDN), and 40 healthy control subjects. A total of 526,071 partial 16S rRNA sequence reads of the V1 to V3 regions were aligned with 16S databases, identifying 3,531 bacterial phylotypes from 115 fecal samples. Genomic analysis revealed significant alterations of organism lineages in both the CDI and CDN groups, which were accompanied by marked decreases in microbial diversity and species richness driven primarily by a paucity of phylotypes within the Firmicutes phylum. Normally abundant gut commensal organisms, including the Ruminococcaceae and Lachnospiraceae families and butyrate-producing C2 to C4 anaerobic fermenters, were significantly depleted in the CDI and CDN groups. These data demonstrate associations between the depletion of Ruminococcaceae, Lachnospiraceae, and butyrogenic bacteria in the gut microbiota and nosocomial diarrhea, including C. difficile infection. Mechanistic studies focusing on the functional roles of these organisms in diarrheal diseases and resistance against C. difficile colonization are warranted.

418 citations

Journal ArticleDOI
TL;DR: A systematic review and meta-analyses of stool microbiome profiles in preterm infants to discern and describe microbial dysbiosis prior to the onset of NEC revealed differences in microbial profiles by study and the target region of the 16S rRNA gene (V1-V3 or V3-V5).
Abstract: Necrotizing enterocolitis (NEC) is a catastrophic disease of preterm infants, and microbial dysbiosis has been implicated in its pathogenesis. Studies evaluating the microbiome in NEC and preterm infants lack power and have reported inconsistent results. Our objectives were to perform a systematic review and meta-analyses of stool microbiome profiles in preterm infants to discern and describe microbial dysbiosis prior to the onset of NEC and to explore heterogeneity among studies. We searched MEDLINE, PubMed, CINAHL, and conference abstracts from the proceedings of Pediatric Academic Societies and reference lists of relevant identified articles in April 2016. Studies comparing the intestinal microbiome in preterm infants who developed NEC to those of controls, using culture-independent molecular techniques and reported α and β-diversity metrics, and microbial profiles were included. In addition, 16S ribosomal ribonucleic acid (rRNA) sequence data with clinical meta-data were requested from the authors of included studies or searched in public data repositories. We reprocessed the 16S rRNA sequence data through a uniform analysis pipeline, which were then synthesized by meta-analysis. We included 14 studies in this review, and data from eight studies were available for quantitative synthesis (106 NEC cases, 278 controls, 2944 samples). The age of NEC onset was at a mean ± SD of 30.1 ± 2.4 weeks post-conception (n = 61). Fecal microbiome from preterm infants with NEC had increased relative abundances of Proteobacteria and decreased relative abundances of Firmicutes and Bacteroidetes prior to NEC onset. Alpha- or beta-diversity indices in preterm infants with NEC were not consistently different from controls, but we found differences in taxonomic profiles related to antibiotic exposure, formula feeding, and mode of delivery. Exploring heterogeneity revealed differences in microbial profiles by study and the target region of the 16S rRNA gene (V1-V3 or V3-V5). Microbial dysbiosis preceding NEC in preterm infants is characterized by increased relative abundances of Proteobacteria and decreased relative abundances of Firmicutes and Bacteroidetes. Microbiome optimization may provide a novel strategy for preventing NEC.

403 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Abstract: This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.

9,057 citations

Journal ArticleDOI
TL;DR: Each year, 31 pathogens caused 9.4 million episodes of foodborne illness, resulting in 55,961 hospitalizations and 1,351 deaths in the United States.
Abstract: Estimates of foodborne illness can be used to direct food safety policy and interventions. We used data from active and passive surveillance and other sources to estimate that each year 31 major pathogens acquired in the United States caused 9.4 million episodes of foodborne illness (90% credible interval [CrI] 6.6–12.7 million), 55,961 hospitalizations (90% CrI 39,534–75,741), and 1,351 deaths (90% CrI 712–2,268). Most (58%) illnesses were caused by norovirus, followed by nontyphoidal Salmonella spp. (11%), Clostridium perfringens (10%), and Campylobacter spp. (9%). Leading causes of hospitalization were nontyphoidal Salmonella spp. (35%), norovirus (26%), Campylobacter spp. (15%), and Toxoplasma gondii (8%). Leading causes of death were nontyphoidal Salmonella spp. (28%), T. gondii (24%), Listeria monocytogenes (19%), and norovirus (11%). These estimates cannot be compared with prior (1999) estimates to assess trends because different methods were used. Additional data and more refined methods can improve future estimates.

6,490 citations

Journal ArticleDOI
TL;DR: This meta-analysis of RCT and observational studies found that the use of probiotics was beneficial for the prevention of severe NEC, late-onset sepsis, and all-cause mortality in VLBW infants.
Abstract: Background: Over the last few years, probiotics have been one of the most studied interventions in neonatal medicine. Objectives:

5,337 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.
Abstract: Trillions of microbes inhabit the human intestine, forming a complex ecological community that influences normal physiology and susceptibility to disease through its collective metabolic activities and host interactions. Understanding the factors that underlie changes in the composition and function of the gut microbiota will aid in the design of therapies that target it. This goal is formidable. The gut microbiota is immensely diverse, varies between individuals and can fluctuate over time — especially during disease and early development. Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.

3,890 citations

Journal ArticleDOI
29 Aug 2013-Nature
TL;DR: The authors' classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
Abstract: We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.

3,448 citations