scispace - formally typeset
V

Volker Presser

Researcher at Leibniz Association

Publications -  306
Citations -  32972

Volker Presser is an academic researcher from Leibniz Association. The author has contributed to research in topics: Carbon & Supercapacitor. The author has an hindex of 62, co-authored 257 publications receiving 23735 citations. Previous affiliations of Volker Presser include University of Tübingen & Drexel University.

Papers
More filters
Journal ArticleDOI

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2

TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Journal ArticleDOI

Two-dimensional transition metal carbides.

TL;DR: Evidence is presented for the exfoliation of the following MAX phases by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication.
Journal ArticleDOI

Carbons and Electrolytes for Advanced Supercapacitors

TL;DR: This review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes, and summarizes the key aspects of various carbon materials synthesized for use in supercapacitors.
Journal ArticleDOI

Review on the science and technology of water desalination by capacitive deionization

TL;DR: Capacitive deionization (CDI) as mentioned in this paper is a promising technology for energy-efficient water desalination using porous carbon electrodes, which is made of porous carbons optimized for salt storage capacity and ion and electron transport.
Journal ArticleDOI

Water desalination via capacitive deionization : What is it and what can we expect from it?

TL;DR: Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications.