scispace - formally typeset
Search or ask a question
Author

W. C. Rheinboldt

Bio: W. C. Rheinboldt is an academic researcher. The author has contributed to research in topics: Adaptive mesh refinement & Finite element method. The author has an hindex of 1, co-authored 1 publications receiving 1359 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The main theorem gives an error estimate in terms of localized quantities which can be computed approximately, and the estimate is optimal in the sense that, up to multiplicative constants which are independent of the mesh and solution, the upper and lower error bounds are the same.
Abstract: A mathematical theory is developed for a class of a-posteriors error estimates of finite element solutions. It is based on a general formulation of the finite element method in terms of certain bilinear forms on suitable Hilbert spaces. The main theorem gives an error estimate in terms of localized quantities which can be computed approximately. The estimate is optimal in the sense that, up to multiplicative constants which are independent of the mesh and solution, the upper and lower error bounds are the same. The theoretical results also lead to a heuristic characterization of optimal meshes, which in turn suggests a strategy for adaptive mesh refinement. Some numerical examples show the approach to be very effective.

1,431 citations


Cited by
More filters
Book
01 Jan 2000
TL;DR: In this paper, a summary account of the subject of a posteriori error estimation for finite element approximations of problems in mechanics is presented, focusing on methods for linear elliptic boundary value problems.
Abstract: This monograph presents a summary account of the subject of a posteriori error estimation for finite element approximations of problems in mechanics. The study primarily focuses on methods for linear elliptic boundary value problems. However, error estimation for unsymmetrical systems, nonlinear problems, including the Navier-Stokes equations, and indefinite problems, such as represented by the Stokes problem are included. The main thrust is to obtain error estimators for the error measured in the energy norm, but techniques for other norms are also discussed.

2,607 citations

Book
28 May 1996
TL;DR: Introduction.
Abstract: Introduction. A Simple Model Problem. Abstract Nonlinear Equations. Finite Element Discretizations of Elliptic PDEs. Practical Implementation. Bibliography. Subject Index.

2,253 citations

Book
01 Jan 1982
TL;DR: This work presents an adaptive method based on the idea of multiple, component grids for the solution of hyperbolic partial differential equations using finite difference techniques based upon Richardson-type estimates of the truncation error, which is a mesh refinement algorithm in time and space.
Abstract: We present an adaptive method based on the idea of multiple, component grids for the solution of hyperbolic partial differential equations using finite difference techniques. Based upon Richardson-type estimates of the truncation error, refined grids are created or existing ones removed to attain a given accuracy for a minimum amount of work. Our approach is recursive in that fine grids can themselves contain even finer grids. The grids with finer mesh width in space also have a smaller mesh width in time, making this a mesh refinement algorithm in time and space. We present the algorithm, data structures and grid generation procedure, and conclude with numerical examples in one and two space dimensions.

2,120 citations

Journal ArticleDOI
TL;DR: The ‘dual-weighted-residual method’ is introduced initially within an abstract functional analytic setting, and is then developed in detail for several model situations featuring the characteristic properties of elliptic, parabolic and hyperbolic problems.
Abstract: This article surveys a general approach to error control and adaptive mesh design in Galerkin finite element methods that is based on duality principles as used in optimal control. Most of the existing work on a posteriori error analysis deals with error estimation in global norms like the ‘energy norm’ or the L2 norm, involving usually unknown ‘stability constants’. However, in most applications, the error in a global norm does not provide useful bounds for the errors in the quantities of real physical interest. Further, their sensitivity to local error sources is not properly represented by global stability constants. These deficiencies are overcome by employing duality techniques, as is common in a priori error analysis of finite element methods, and replacing the global stability constants by computationally obtained local sensitivity factors. Combining this with Galerkin orthogonality, a posteriori estimates can be derived directly for the error in the target quantity. In these estimates local residuals of the computed solution are multiplied by weights which measure the dependence of the error on the local residuals. Those, in turn, can be controlled by locally refining or coarsening the computational mesh. The weights are obtained by approximately solving a linear adjoint problem. The resulting a posteriori error estimates provide the basis of a feedback process for successively constructing economical meshes and corresponding error bounds tailored to the particular goal of the computation. This approach, called the ‘dual-weighted-residual method’, is introduced initially within an abstract functional analytic setting, and is then developed in detail for several model situations featuring the characteristic properties of elliptic, parabolic and hyperbolic problems. After having discussed the basic properties of duality-based adaptivity, we demonstrate the potential of this approach by presenting a selection of results obtained for practical test cases. These include problems from viscous fluid flow, chemically reactive flow, elasto-plasticity, radiative transfer, and optimal control. Throughout the paper, open theoretical and practical problems are stated together with references to the relevant literature.

1,274 citations

Journal ArticleDOI
TL;DR: In this article, a-posteriori error estimates for finite element solutions are derived in an asymptotic form for h 0 where h measures the size of the elements.
Abstract: Computable a-posteriori error estimates for finite element solutions are derived in an asymptotic form for h 0 where h measures the size of the elements. The approach has similarity to the residual method but differs from it in the use of norms of negative Sobolev spaces corresponding to the given bilinear (energy) form. For clarity the presentation is restricted to one-dimensional model problems. More specifically, the source, eigenvalue, and parabolic problems are considered involving a linear, self-adjoint operator of the second order. Generalizations to more general one-dimensional problems are straightforward, and the results also extend to higher space dimensions; but this involves some additional considerations. The estimates can be used for a practical a-posteriori assessment of the accuracy of a computed finite element solution, and they provide a basis for the design of adaptive finite element solvers.

1,211 citations