scispace - formally typeset
Search or ask a question
Author

W. Caldwell

Bio: W. Caldwell is an academic researcher. The author has contributed to research in topics: Cognitive radio & IEEE 802.11r-2008. The author has an hindex of 1, co-authored 1 publications receiving 1084 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article presents a high-level overview of the IEEE 802.22 standard for cognitive wireless regional area networks (WRANs) that is under development in the IEEE802 LAN/MAN Standards Committee.
Abstract: This article presents a high-level overview of the IEEE 802.22 standard for cognitive wireless regional area networks (WRANs) that is under development in the IEEE 802 LAN/MAN Standards Committee.

1,125 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper provides a systematic overview on CR networking and communications by looking at the key functions of the physical, medium access control (MAC), and network layers involved in a CR design and how these layers are crossly related.
Abstract: Cognitive radio (CR) is the enabling technology for supporting dynamic spectrum access: the policy that addresses the spectrum scarcity problem that is encountered in many countries. Thus, CR is widely regarded as one of the most promising technologies for future wireless communications. To make radios and wireless networks truly cognitive, however, is by no means a simple task, and it requires collaborative effort from various research communities, including communications theory, networking engineering, signal processing, game theory, software-hardware joint design, and reconfigurable antenna and radio-frequency design. In this paper, we provide a systematic overview on CR networking and communications by looking at the key functions of the physical (PHY), medium access control (MAC), and network layers involved in a CR design and how these layers are crossly related. In particular, for the PHY layer, we will address signal processing techniques for spectrum sensing, cooperative spectrum sensing, and transceiver design for cognitive spectrum access. For the MAC layer, we review sensing scheduling schemes, sensing-access tradeoff design, spectrum-aware access MAC, and CR MAC protocols. In the network layer, cognitive radio network (CRN) tomography, spectrum-aware routing, and quality-of-service (QoS) control will be addressed. Emerging CRNs that are actively developed by various standardization committees and spectrum-sharing economics will also be reviewed. Finally, we point out several open questions and challenges that are related to the CRN design.

980 citations

Journal ArticleDOI
10 May 2016
TL;DR: The security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues, and the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer are discussed.
Abstract: Due to the broadcast nature of radio propagation, the wireless air interface is open and accessible to both authorized and illegitimate users. This completely differs from a wired network, where communicating devices are physically connected through cables and a node without direct association is unable to access the network for illicit activities. The open communications environment makes wireless transmissions more vulnerable than wired communications to malicious attacks, including both the passive eavesdropping for data interception and the active jamming for disrupting legitimate transmissions. Therefore, this paper is motivated to examine the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. Several physical-layer security techniques are reviewed and compared, including information-theoretic security, artificial-noise-aided security, security-oriented beamforming, diversity-assisted security, and physical-layer key generation approaches. Since a jammer emitting radio signals can readily interfere with the legitimate wireless users, we also introduce the family of various jamming attacks and their countermeasures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer, and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.

948 citations

Journal ArticleDOI
Ning Lu1, Nan Cheng1, Ning Zhang1, Xuemin Shen1, Jon W. Mark1 
TL;DR: The challenges and potential challenges to provide vehicle-to-x connectivity are discussed and the state-of-the-art wireless solutions for vehicle-To-sensor, vehicle- to-vehicle, motorway infrastructure connectivities are reviewed.
Abstract: Providing various wireless connectivities for vehicles enables the communication between vehicles and their internal and external environments. Such a connected vehicle solution is expected to be the next frontier for automotive revolution and the key to the evolution to next generation intelligent transportation systems (ITSs). Moreover, connected vehicles are also the building blocks of emerging Internet of Vehicles (IoV). Extensive research activities and numerous industrial initiatives have paved the way for the coming era of connected vehicles. In this paper, we focus on wireless technologies and potential challenges to provide vehicle-to-x connectivity. In particular, we discuss the challenges and review the state-of-the-art wireless solutions for vehicle-to-sensor, vehicle-to-vehicle, vehicle-to-Internet, and vehicle-to-road infrastructure connectivities. We also identify future research issues for building connected vehicles.

936 citations

Journal ArticleDOI
TL;DR: Spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed.
Abstract: Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

690 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer.
Abstract: This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.

632 citations