scispace - formally typeset
Search or ask a question
Author

W.H. Jung

Bio: W.H. Jung is an academic researcher from LG Electronics. The author has contributed to research in topics: Nanofluid & Thermal conductivity. The author has an hindex of 1, co-authored 1 publications receiving 290 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, various nanoparticles, such as multi-walled carbon nanotube (MWCNT), fullerene, copper oxide, silicon dioxide and silver, are used to produce nanofluids for enhancing thermal conductivity and lubrication.

330 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Abstract: Nanofluids are potential heat transfer fluids with enhanced thermophysical properties and heat transfer performance can be applied in many devices for better performances (i.e. energy, heat transfer and other performances). In this paper, a comprehensive literature on the applications and challenges of nanofluids have been compiled and reviewed. Latest up to date literatures on the applications and challenges in terms of PhD and Master thesis, journal articles, conference proceedings, reports and web materials have been reviewed and reported. Recent researches have indicated that substitution of conventional coolants by nanofluids appears promising. Specific application of nanofluids in engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense and space have been reviewed and presented. Authors also critically analyzed some of the applications and identified research gaps for further research. Moreover, challenges and future directions of applications of nanofluids have been reviewed and presented in this paper. Based on results available in the literatures, it has been found nanofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids. This can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids. Because of its superior thermal performances, latest up to date literatures on this property have been summarized and presented in this paper as well. However, few barriers and challenges that have been identified in this review must be addressed carefully before it can be fully implemented in the industrial applications.

1,558 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Abstract: This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.

1,023 citations

Journal ArticleDOI
TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.

948 citations

Journal ArticleDOI
TL;DR: In this article, the effects of particle volume fraction, temperature and particle size on thermal conductivity of alumina/water and copper oxide/water nanofluids were investigated.

886 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent development in research on synthesis and characterization of stationary nanofluids and try to find some challenging issues that need to be solved for future research.

732 citations