scispace - formally typeset
Search or ask a question
Author

W. I. Axford

Bio: W. I. Axford is an academic researcher. The author has contributed to research in topics: Geomagnetic storm & Earth's magnetic field. The author has an hindex of 2, co-authored 2 publications receiving 1299 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...
Abstract: This paper is concerned with the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...

1,320 citations

Book ChapterDOI
01 Jan 1974
TL;DR: In this article, the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...
Abstract: This paper is concerned with the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbance dynamo.
Abstract: A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbance dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the mid-latitude thermosphere or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E × B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an ‘anti-Sq’ type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of disturbance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E × B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes.

1,049 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the NENL model of magnetospheric substorms, including the role of coupling with the solar wind and interplanetary magnetic field, the growth phase sequence, the expansion phase (and onset), and the recovery phase.
Abstract: The near-Earth neutral line (NENL) model of magnetospheric substorms is reviewed. The observed phenomenology of substorms is discussed including the role of coupling with the solar wind and interplanetary magnetic field, the growth phase sequence, the expansion phase (and onset), and the recovery phase. New observations and modeling results are put into the context of the prior model framework. Significant issues and concerns about the shortcomings of the NENL model are addressed. Such issues as ionosphere-tail coupling, large-scale mapping, onset trigger- ing, and observational timing are discussed. It is concluded that the NENL model is evolving and being improved so as to include new observations and theoretical insights. More work is clearly required in order to incorporate fully the complete set of ionospheric, near-tail, midtail, and deep- tail features of substorms. Nonetheless, the NENL model still seems to provide the best avail- able framework for ordering the complex, global manifestations of substorms.

992 citations

Book ChapterDOI
01 Jan 1970
TL;DR: In this paper, a model is defined as a solution of the equations that describe the system under consideration, i.e., a solution to the equations governing a system as complex as the magnetosphere is clearly impossible, and to construct a theoretical model the equations must be simplified to the point of tractability.
Abstract: The phrase ‘magnetospheric model’ can have several different meanings. Here I am using the term ‘model’ in the sense described by Parker (1968): “We construct idealized and simplified theoretical models for the purpose of demonstrating how the basic laws of physics lead to a certain observed effect.” A model in this sense is a solution of the equations that describe the system under consideration. Obtaining an exact solution of the equations governing a system as complex as the magnetosphere is clearly impossible, and to construct a theoretical model the equations must be simplified (often drastically) to the point of tractability. The aim is to isolate those aspects of the physical situation that are essential to the particular phenomenon one is attempting to understand. One thus proceeds by solving the basic equations under a variety of simplifying assumptions and noting what assumptions are required to reproduce the essential features of the phenomenon under study. Of course, no model will predict in precise quantitative detail all the features of the observations, but then our primary goal is understanding, not forecasting.

738 citations

Journal ArticleDOI
TL;DR: In this paper, a method of deriving large-scale convection maps based on all the available velocity data is described, which is used to determine a solution for the distribution of electrostatic potential, expressed as a series expansion in spherical harmonics.
Abstract: The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. With the recent augmentation of the northern hemisphere component to six radars, a sizable fraction of the entire convection zone (approximately one-third) can be imaged nearly instantaneously (∼2 min). To date, the two-dimensional convection velocity has been mapped by combining line-of-sight velocity measurements obtained from pairs of radars within common-volume areas. We describe a new method of deriving large-scale convection maps based on all the available velocity data. The measurements are used to determine a solution for the distribution of electrostatic potential, Φ, expressed as a series expansion in spherical harmonics. The addition of data from a statistical model constrains the solution in regions of no data coverage. For low-order expansions the results provide a gross characterization of the global convection. We discuss the processing of the radar velocity data, the factors that condition the fitting, and the reliability of the results. We present examples of imaging that demonstrate the response of the global convection to variations in the interplanetary magnetic field (IMF). In the case of a sudden polarity change from northward to southward IMF, the convection is seen to reconfigure globally on very short (<6 min) timescales.

661 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event, and showed that double, and sometimes triple, IMF Bs events are important causes of such events.
Abstract: Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process. During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfven waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs). Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms.

588 citations