scispace - formally typeset
Search or ask a question
Author

W. J. Burtis

Bio: W. J. Burtis is an academic researcher from Stanford University. The author has contributed to research in topics: Auroral chorus & Dawn chorus. The author has an hindex of 2, co-authored 2 publications receiving 559 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed 400 hours of continuous broadband data obtained by the OGO 3 satellite to provide a statistically accurate description of band-limited (magnetospheric) chorus and concluded that most magnetospheric chorus consists of rising emissions which are probably generated by gyroresonant electrons slightly off the equator.

316 citations

Journal ArticleDOI
TL;DR: Banded chorus, VLF discrete emissions in magnetosphere in single variable frequency band with frequency depending on equatorial electron gyrofrequency were reported in this paper, where the frequency of the emitted emissions varied with the distance from the equatorial node to the magnetosphere.
Abstract: Banded chorus, VLF discrete emissions in magnetosphere in single variable frequency band with frequency depending on equatorial electron gyrofrequency

315 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the post-midnight chorus was detected in the midnight sector of the magnetosphere in conjunction with magnetospheric substorms and the characteristics of these emissions such as their frequency time structure, emission frequency with respect to the local equatorial electron gyrofrequency, intensity-time variation, and the average intensity were investigated.
Abstract: The ELF emissions were detected in the midnight sector of the magnetosphere in conjunction with magnetospheric substorms. The emissions were observed at local midnight and early morning hours and are accordingly called 'post-midnight chorus.' The characteristics of these emissions such as their frequency time structure, emission frequency with respect to the local equatorial electron gyrofrequency, intensity-time variation, and the average intensity were investigated. The occurrence of the chorus in the nightside magnetosphere was investigated as a function of local time, L shell, magnetic latitude, and substorm activity, and the results of this analysis are presented. Specific features of postmidnight chorus are discussed in the context of possible wave-particle interactions occurring during magnetospheric substorms.

626 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency and found that the seeds of chorus emissions with a rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude.
Abstract: [1] The generation process of whistler-mode chorus emissions is analyzed by both theory and simulation. Driven by an assumed strong temperature anisotropy of energetic electrons, the initial wave growth of chorus is linear. After the linear growth phase, the wave amplitude grows nonlinearly. It is found that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. We derive the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency. Wave trapping of resonant electrons near the equator results in the formation of an electromagnetic electron hole in the wave phase space. For a specific wave phase variation, corresponding to a rising frequency, the electron hole can form a resonant current that causes growth of a wave with a rising frequency. Seeds of chorus elements grow from the saturation level of the whistler-mode instability at the equator and then propagate away from the equator. In the frame of reference moving with the group velocity, the wave frequency is constant. The wave amplitude is amplified by the nonlinear resonant current, which is sustained by the increasing inhomogeneity of the dipole magnetic field over some distance from the equator. Chorus elements are generated successively at the equator so long as a sufficient flux of energetic electrons with a strong temperature anisotropy is present.

485 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used bounce-averaged quasi-linear diffusion coefficients for field-aligned waves with a Gaussian frequency spectrum in a dipole magnetic field to evaluate timescales for electron momentum diffusion and pitch angle diffusion, and confirmed that chorus diffusion is a viable mechanism for generating relativistic (MeV) electrons in the outer zone during the recovery phase of a storm or during periods of prolonged substorm activity when chorus amplitudes are enhanced.
Abstract: Outer zone radiation belt electrons can undergo gyroresonant interaction with various magnetospheric wave modes including whistler-mode chorus outside the plasmasphere and both whistler-mode hiss and electromagnetic ion cyclotron (EMIC) waves inside the plasmasphere. To evaluate timescales for electron momentum diffusion and pitch angle diffusion, we utilize bounce-averaged quasi-linear diffusion coefficients for field-aligned waves with a Gaussian frequency spectrum in a dipole magnetic field. Timescales for momentum diffusion of MeV electrons due to VLF chorus can be less than a day in the outer radiation belt. Equatorial chorus waves (|λw| < 15 deg) can effectively accelerate MeV electrons. Efficiency of the chorus acceleration mechanism is increased if high-latitude waves (|λw| < 15 deg) are also present. Our calculations confirm that chorus diffusion is a viable mechanism for generating relativistic (MeV) electrons in the outer zone during the recovery phase of a storm or during periods of prolonged substorm activity when chorus amplitudes are enhanced. Radiation belt electrons are subject to precipitation loss to the atmosphere due to resonant pitch angle scattering by plasma waves. The electron precipitation loss timescale due to scattering by each of the wave modes, chorus, hiss, and EMIC waves, can be 1 day or less. These wave modes can separately, or in combination, contribute significantly to the depletion of relativistic (MeV) electrons from the outer zone over the course of a magnetic storm. Efficient pitch angle scattering by whistler-mode chorus or hiss typically requires high latitude waves (|λw| < 30 deg). Timescales for electron acceleration and loss generally depend on the spectral properties of the waves, as well as the background electron number density and magnetic field. Loss timescales due to EMIC wave scattering also depend on the ion (H+, He+, O+) composition of the plasma. Complete models of radiation belt electron transport, acceleration and loss should include, in addition to radial (cross-L) diffusion, resonant diffusion due to gyroresonance with VLF chorus, plasmaspheric hiss, and EMIC waves. Comprehensive observational data on the spectral properties of these waves are required as a function of spatial location (L, MLT, MLAT) and magnetic activity.

413 citations

Journal ArticleDOI
TL;DR: In this article, a sine-wave parametric model with a variable amplitude was used to analyze the lower band of chorus below one half of the electron cyclotron frequency, measured at a radial distance of 4.4 Earth's radii, within a 2000 km long source region located close to the equator.
Abstract: We discuss chorus emissions measured by the four Cluster spacecraft at close separations during a geomagnetically disturbed period on 18 April 2002. We analyze the lower band of chorus below one half of the electron cyclotron frequency, measured at a radial distance of 4.4 Earth's radii, within a 2000 km long source region located close to the equator. The characteristic wave vector directions in this region are nearly parallel to the field lines and the multipoint measurement demonstrates the dynamic character of the chorus source region, changing the Poynting flux direction at time scales shorter than a few seconds. The electric field waveforms of the chorus wave packets (forming separate chorus elements on power spectrograms) show a fine structure consisting of subpackets with a maximum amplitude above 30 mV/m. To study this fine structure we have used a sine-wave parametric model with a variable amplitude. The subpackets typically start with an exponential growth phase, and after reaching the saturation amplitude they often show an exponential decay phase. The duration of subpackets is variable from a few milliseconds to a few tens of milliseconds, and they appear in the waveform randomly, with no clear periodicity. The obtained growth rate (ratio of the imaginary part to the real part of the wave frequency) is highly variable from case to case with values obtained between a few thousandths and a few hundredths. The same chorus wave packets simultaneously observed on the different closely separated spacecraft appear to have a different internal subpacket structure. The characteristic scale of the subpackets can thus be lower than tens of kilometers in the plane perpendicular to the field line, or hundreds of kilometers parallel to the field line (corresponding to a characteristic time scale of few milliseconds during the propagation of the entire wave packet). Using delays of time-frequency curves obtained on different spacecraft, we have found the same propagation direction as obtained from the simultaneous Poynting flux calculations. The delays roughly correspond to the whistler-mode group velocity estimated from the cold plasma theory. We have also observed delays corresponding to antiparallel propagation directions for two neighboring chorus wave packets, less than 0.1 s apart.

395 citations

Journal ArticleDOI
06 Mar 2008-Nature
TL;DR: It is shown that a different wave type called chorus, previously thought to be unrelated to hiss, can propagate into the plasmasphere from tens of thousands of kilometres away, and evolve into hiss.
Abstract: Plasmaspheric hiss is a type of electromagnetic wave found ubiquitously in the dense plasma region that encircles the Earth, known as the plasmasphere. This important wave is known to remove the high-energy electrons that are trapped along the Earth's magnetic field lines, and therefore helps to reduce the radiation hazards to satellites and humans in space. Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties. Here we show that a different wave type called chorus, previously thought to be unrelated to hiss, can propagate into the plasmasphere from tens of thousands of kilometres away, and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day-night asymmetry in intensity, its association with solar activity and its spatial distribution. The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere, whereas hiss depletes these electrons at lower equatorial altitudes.

337 citations