scispace - formally typeset
Search or ask a question
Author

W. M. Hertel

Bio: W. M. Hertel is an academic researcher from Naval Surface Warfare Center. The author has contributed to research in topics: Fouling & Hull. The author has an hindex of 1, co-authored 1 publications receiving 882 citations.
Topics: Fouling, Hull

Papers
More filters
Journal ArticleDOI
TL;DR: The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.
Abstract: In the present study, the overall economic impact of hull fouling on a mid-sized naval surface ship (Arleigh Burke-class destroyer DDG-51) has been analyzed. A range of costs associated with hull fouling was examined, including expenditures for fuel, hull coatings, hull coating application and removal, and hull cleaning. The results indicate that the primary cost associated with fouling is due to increased fuel consumption attributable to increased frictional drag. The costs related to hull cleaning and painting are much lower than the fuel costs. The overall cost associated with hull fouling for the Navy's present coating, cleaning, and fouling level is estimated to be $56M per year for the entire DDG-51 class or $1B over 15 years. The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.

1,066 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations

Journal ArticleDOI
TL;DR: Advances in nanotechnology and polymer science, and the development of novel surface designs 'bioinspired' by nature, are expected to have a significant impact on theDevelopment of a new generation of environmentally friendly marine coatings.
Abstract: 'Marine biofouling', the undesired growth of marine organisms such as microorganisms, barnacles and seaweeds on submerged surfaces, is a global problem for maritime industries, with both economic and environmental penalties. The primary strategy for combating marine fouling is to use biocide-containing paints, but environmental concerns and legislation are driving science and technology towards non-biocidal solutions based solely on physico-chemical and materials properties of coatings. Advances in nanotechnology and polymer science, and the development of novel surface designs 'bioinspired' by nature, are expected to have a significant impact on the development of a new generation of environmentally friendly marine coatings.

994 citations

Journal ArticleDOI
01 May 2013-Apmis
TL;DR: Evidence is presented to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental conditions.
Abstract: Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental conditions. I will make a series of correlations to highlight the most important aspects of biofilms from my perspective, and to determine what can be deduced from the past decades of biofilm research. I will try to bridge in vitro and in vivo research and propose methods for studying biofilms based on this knowledge. I will compare how bacterial biofilms exist in stable ecological habitats and opportunistically in unstable ecological habitats, such as infections. Bacteria have a similar lifestyle (the biofilm) in both habitats, but the fight for survival and supremacy is different. On the basis of this comparison, I will hypothesize how chronic biofilm infections are initiated and how bacteria live together in these infections. Finally, I will discuss different aspects of biofilm infection diagnosis. Hopefully, this survey of current knowledge and my proposed guidelines will provide the basis and inspiration for more research, improved diagnostics, and treatments for well-known biofilm infections and any that may be identified in the future.

816 citations

Journal ArticleDOI
25 Jun 2015-ACS Nano
TL;DR: The size-dependency of GO antimicrobial activity using the Gram-negative bacteria Escherichia coli is investigated to provide useful guidelines for future development of graphene-based antimicrobial surface coatings, where smaller sheet sizes can increase the antimacterial activity of the material.
Abstract: Graphene oxide (GO) is a promising material for the development of antimicrobial surfaces due to its contact-based antimicrobial activity. However, the relationship between GO physicochemical properties and its antimicrobial activity has yet to be elucidated. In this study, we investigated the size-dependency of GO antimicrobial activity using the Gram-negative bacteria Escherichia coli. GO suspensions of average sheet area ranging from 0.01 to 0.65 μm2 were produced and their antimicrobial activity evaluated in cell suspensions or as a model GO surface coating. The antimicrobial activity of GO surface coatings increased 4-fold when GO sheet area decreased from 0.65 to 0.01 μm2. The higher antimicrobial effect of smaller GO sheets is attributed to oxidative mechanisms associated with the higher defect density of smaller sheets. In contrast, in suspension assays, GO interacted with bacteria in a cell entrapment mechanism; in this case, the antimicrobial effect of GO increased with increasing sheet area, wi...

756 citations