scispace - formally typeset
Search or ask a question
Author

W.M.P. van der Aalst

Bio: W.M.P. van der Aalst is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Workflow & Process mining. The author has an hindex of 85, co-authored 246 publications receiving 35823 citations. Previous affiliations of W.M.P. van der Aalst include RWTH Aachen University & Queensland University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.
Abstract: Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.

2,862 citations

Journal ArticleDOI
01 Jul 2003
TL;DR: In this paper, the authors describe a number of workflow patterns addressing what they believe identify comprehensive workflow functionality and provide the basis for an in-depth comparison of commercial workflow management systems.
Abstract: Differences in features supported by the various contemporary commercial workflow management systems point to different insights of suitability and different levels of expressive power. The challenge, which we undertake in this paper, is to systematically address workflow requirements, from basic to complex. Many of the more complex requirements identified, recur quite frequently in the analysis phases of workflow projects, however their implementation is uncertain in current products. Requirements for workflow languages are indicated through workflow patterns. In this context, patterns address business requirements in an imperative workflow style expression, but are removed from specific workflow languages. The paper describes a number of workflow patterns addressing what we believe identify comprehensive workflow functionality. These patterns provide the basis for an in-depth comparison of a number of commercially available workflow management systems. As such, this paper can be seen as the academic response to evaluations made by prestigious consulting companies. Typically, these evaluations hardly consider the workflow modeling language and routing capabilities, and focus more on the purely technical and commercial aspects.

2,553 citations

Journal ArticleDOI
TL;DR: A new algorithm is presented to extract a process model from a so-called "workflow log" containing information about the workflow process as it is actually being executed and represent it in terms of a Petri net.
Abstract: Contemporary workflow management systems are driven by explicit process models, i.e., a completely specified workflow design is required in order to enact a given workflow process. Creating a workflow design is a complicated time-consuming process and, typically, there are discrepancies between the actual workflow processes and the processes as perceived by the management. Therefore, we have developed techniques for discovering workflow models. The starting point for such techniques is a so-called "workflow log" containing information about the workflow process as it is actually being executed. We present a new algorithm to extract a process model from such a log and represent it in terms of a Petri net. However, we also demonstrate that it is not possible to discover arbitrary workflow processes. We explore a class of workflow processes that can be discovered. We show that the /spl alpha/-algorithm can successfully mine any workflow represented by a so-called SWF-net.

1,953 citations

Journal ArticleDOI
TL;DR: In this paper, a new workflow language (YAWL) is proposed based on a rigorous analysis of existing workflow management systems and workflow languages, and a set of workflow patterns are collected.

1,225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research.
Abstract: Two paradigms characterize much of the research in the Information Systems discipline: behavioral science and design science The behavioral-science paradigm seeks to develop and verify theories that explain or predict human or organizational behavior The design-science paradigm seeks to extend the boundaries of human and organizational capabilities by creating new and innovative artifacts Both paradigms are foundational to the IS discipline, positioned as it is at the confluence of people, organizations, and technology Our objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research In the design-science paradigm, knowledge and understanding of a problem domain and its solution are achieved in the building and application of the designed artifact Three recent exemplars in the research literature are used to demonstrate the application of these guidelines We conclude with an analysis of the challenges of performing high-quality design-science research in the context of the broader IS community

10,264 citations

Journal ArticleDOI
TL;DR: This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.
Abstract: Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.

2,862 citations

Journal ArticleDOI
01 Jul 2003
TL;DR: In this paper, the authors describe a number of workflow patterns addressing what they believe identify comprehensive workflow functionality and provide the basis for an in-depth comparison of commercial workflow management systems.
Abstract: Differences in features supported by the various contemporary commercial workflow management systems point to different insights of suitability and different levels of expressive power. The challenge, which we undertake in this paper, is to systematically address workflow requirements, from basic to complex. Many of the more complex requirements identified, recur quite frequently in the analysis phases of workflow projects, however their implementation is uncertain in current products. Requirements for workflow languages are indicated through workflow patterns. In this context, patterns address business requirements in an imperative workflow style expression, but are removed from specific workflow languages. The paper describes a number of workflow patterns addressing what we believe identify comprehensive workflow functionality. These patterns provide the basis for an in-depth comparison of a number of commercially available workflow management systems. As such, this paper can be seen as the academic response to evaluations made by prestigious consulting companies. Typically, these evaluations hardly consider the workflow modeling language and routing capabilities, and focus more on the purely technical and commercial aspects.

2,553 citations