scispace - formally typeset
Search or ask a question
Author

W. Rieger

Bio: W. Rieger is an academic researcher from Technische Universität München. The author has contributed to research in topics: Gallium nitride & Metalorganic vapour phase epitaxy. The author has an hindex of 9, co-authored 12 publications receiving 2888 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of various thicknesses of AlN buffer layers on the strain in thin GaN films was studied by x-ray diffraction and Raman and photoluminescence spectroscopy.
Abstract: The influence of biaxial stress on the optical properties of thin GaN films is studied by x‐ray diffraction and Raman and photoluminescence spectroscopy. The stress is caused by differences in the thermal expansion coefficient and lattice mismatch between the film and c‐plane sapphire substrates. In particular, the influence of various thicknesses of AlN buffer layers on the strain in GaN films is studied. GaN/AlN films were deposited by low pressure metal organic chemical vapor deposition using triethylgallium and tritertbutylaluminum and ammonia. We observe a pronounced reduction of strain in the GaN films with increasing buffer thickness: An AlN buffer layer thicker than 200 nm eliminates the stress completely. Estimates of the linear coefficient for the near band gap luminescence shift due to biaxial compressive strain yield a value of 24 meV/GPa.

207 citations

Journal ArticleDOI
TL;DR: In this article, photothermal deflection spectroscopy (PDS) is used to study the sub-bandgap absorption of hexagonal gallium nitride (GaN) in the energy range from 0.6 to 3.8 eV.

118 citations

Journal ArticleDOI
TL;DR: It is proposed that in this energy range the spectrum is dominated by interband absorption in isolated cubic-phase crystallites in the hexagonal matrix and by excitation of electrons from occupied acceptors into the conduction band of the main hexagonal crystal modification.
Abstract: Sub-band-gap absorption of GaN grown by metal-organic chemical vapor deposition on sapphire was investigated by photothermal deflection spectroscopy (PDS), transmission measurements, and the constant photocurrent method (CPM). We determine acceptor binding energies in undoped GaN at 220 and about 720 meV. A comparison between absorption and CPM spectra yields the dependence of the quantum efficiency-mobility-lifetime-product ($\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\tau}$) versus energy and gives relevant information about the excitation mechanisms. CPM spectra show a significantly smaller absorption (up to a factor of $\frac{1}{10}$) in the range between 3.0 and 3.3 eV as compared to PDS. This indicates that the majority of carriers excited with these photon energies have a relatively small $\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\tau}$ product and thus do not contribute to the externally detected photocurrent. We propose that in this energy range the spectrum is dominated by interband absorption in isolated cubic-phase crystallites in the hexagonal matrix and by excitation of electrons from occupied acceptors into the conduction band of the main hexagonal crystal modification ($h$-GaN). Temperature-dependent photoluminescence measurements, excited with energies below and above the direct band gap of hexagonal GaN, confirm this interpretation and can be correlated with the subgap absorption detected by PDS. Transient photocurrent measurements show a persistent photoconductivity, which can also be explained by the existence of isolated cubic-phase inclusions.

78 citations

Journal ArticleDOI
TL;DR: In this article, the role of hydrogen in gallium nitride was studied on thin films of GaN on sapphire prepared at substrate temperatures in the range of 600 to 1100 °C.
Abstract: The role of hydrogen in gallium nitride was studied on thin films of GaN on sapphire prepared at substrate temperatures in the range of 600 to 1100 °C. By using triethylgallium and ammonia as precursor and hydrogen and/or nitrogen as transport gases, we have observed a strong influence of molecular hydrogen on the deposition rate and the structural properties of epitaxial GaN. By elastic recoil detection analysis and thermal desorption measurements we were able to determine the total concentration of nitrogen, hydrogen and carbon in the bulk material. Isotope substitution of hydrogen by deuterium in the H2 carrier gas did not give rise to a noticeable deuterium incorporation, showing that the sources for hydrogen are the metalorganic precursor, ammonia or reaction products of both. Once incorporated, thermally activated hydrogen effusion from n-type GaN occurs with an activation energy of more than 3.9 eV. With the help of mass spectrometry we established hydrogen effusion from heavily magnesium-doped (2 at%) GaN at temperatures between 600 and 700 °C, which is the temperature range used for acceptor activation.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems of the AlGaN/GaN high-electron mobility transistor.
Abstract: Wide bandgap semiconductors are extremely attractive for the gamut of power electronics applications from power conditioning to microwave transmitters for communications and radar. Of the various materials and device technologies, the AlGaN/GaN high-electron mobility transistor seems the most promising. This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems.

1,849 citations

Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations