scispace - formally typeset
Search or ask a question
Author

W. T. Blackshear

Bio: W. T. Blackshear is an academic researcher from Langley Research Center. The author has contributed to research in topics: Moment of inertia & Atmospheric convection. The author has an hindex of 2, co-authored 2 publications receiving 307 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, simulations of 222Rn and other short-lived tracers are used to evaluate and intercompare the representations of convective and synoptic processes in 20 global atmospheric transport models.
Abstract: Simulations of 222Rn and other short-lived tracers are used to evaluate and intercompare the representations of convective and synoptic processes in 20 global atmospheric transport models. Results show that most established three-dimensional models simulate vertical mixing in the troposphere to within the constraints offered by the observed mean 222Rn concentrations and that subgrid parameterization of convection is essential for this purpose. However, none of the models captures the observed variability of 222Rn concentrations in the upper troposphere, and none reproduces the high 222Rn concentrations measured at 200 hPa over Hawaii. The established three-dimensional models reproduce the frequency and magnitude of high-222Rn episodes observed at Crozet Island in the Indian Ocean, demonstrating that they can resolve the synoptic-scale transport of continental plumes with no significant numerical diffusion. Large differences between models are found in the rates of meridional transport in the upper troposphere (interhemispheric exchange, exchange between tropics and high latitudes). The four two-dimensional models which participated in the intercomparison tend to underestimate the rate of vertical transport from the lower to the upper troposphere but show concentrations of 222Rn in the lower troposphere that are comparable to the zonal mean values in the three-dimensional models.

279 citations

Journal ArticleDOI
TL;DR: The second-degree zonal harmonic coefficient C(20) = (-2.0219 equal to 0.0091) times 10 to the minus 4 was derived by as mentioned in this paper.
Abstract: The lunar gravitational research reported on by Gapcynski et al., (1975) has been extended to include an additional 600 days of the time variation of ascending node for the Explorer 49 spacecraft. Analysis of these additional data resulted in an improved value of the second-degree zonal harmonic coefficient C(20) = (-2.0219 equal to 0.0091) times 10 to the minus 4. This value of C(20) used in conjunction with the parameters beta equal to libration (631.27 + or - 0.03) times 10 to the minus 6 and gamma to (227.7 + or - 0.7) times 10 to the minus 6 yields a more accurate definition of the lunar moment of inertia ratio equal to 0.391 + or - 0.002.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The GEOS-CHEM model as mentioned in this paper is a 3D model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO).
Abstract: We present a first description and evaluation of GEOS-CHEM, a global three-dimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NOx-hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2-3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 plus or minus 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are approximately 20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10-30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source from the ocean may be implicated.

2,024 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of 26 state-of-the-art atmospheric chemistry models have been compared and synthesized as part of a wider study into both the air quality and climate roles of ozone.
Abstract: Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each model's ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprene's degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.

1,141 citations

Journal ArticleDOI
TL;DR: Simpler models representing transport, limiting precursor pollutants, and gas-to-particle equilibrium should be used to understand where and when emission reductions will be effective, rather than large complex models that have insufficient input and validation measurements.
Abstract: The 1999 Regional Haze Rule provides a context for this review of visibility, the science that describes it, and the use of that science in regulatory guidance The scientific basis for the 1999 regulation is adequate The deciview metric that tracks progress is an imperfect but objective measure of what people see near the prevailing visual range The definition of natural visibility conditions is adequate for current planning, but it will need to be refined as visibility improves Emissions from other countries will set achievable levels above those produced by natural sources Some natural events, notably dust storms and wildfires, are episodic and cannot be represented by annual average background values or emission estimates Sulfur dioxide (SO2) emission reductions correspond with lower sulfate (SO4 2−) concentrations and visibility im-provements in the regions where these have occurred Non-road emissions have been growing more rapidly than emissions from other sources, which have remained

964 citations

Book Chapter
01 Oct 2001
TL;DR: The IPCC Third Assessment Report Climate Change 2001: The Scientific Basis as mentioned in this paper is a summary of the scientific basis for climate change and its impact on the global environment, including the impact of global atmospheric chemistry change.
Abstract: Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

699 citations

Journal ArticleDOI
TL;DR: In this article, the atmospheric distributions of the aerosol tracers Pb-210 and Be-7 are simulated with a global three-dimensional model driven by assimilated meteorological observations for 1991-1996 from the NASA Goddard Earth Observing System (GEOSl).
Abstract: The atmospheric distributions of the aerosol tracers Pb-210 and Be-7 are simulated with a global three-dimensional model driven by assimilated meteorological observations for 1991-1996 from the NASA Goddard Earth Observing System (GEOSl). The combination of terrigenic Pb-210 and cosmogenic Be-7 provides a sensitive test of wet deposition and vertical transport in the model. Our simulation of moist transport and removal includes scavenging in wet convective updrafts (40% scavenging efficiency per kilometer of updraft), midlevel entrainment and detrainment, first-order rainout and washout from both convective anvils and large-scale precipitation, and cirrus precipitation. Observations from surface sites in specific years are compared to model results for the corresponding meteorological years, and observations from aircraft missions over the Pacific are compared to model results for the days of the flights. Initial simulation of Be-7 showed that cross-tropopause transport in the GEOSl meteorological fields is too fast by a factor of 3-4. We adjusted the stratospheric Be-7 source to correct the tropospheric simulation. Including this correction, we find that the model gives a good simulation of observed Pb-210 and Be-7 concentrations and deposition fluxes at surface sites worldwide, with no significant global bias and with significant success in reproducing the observed latitudinal and seasonal distributions. We achieve several improvements over previous models; in particular, we reproduce the observed Be-7 minimum in the tropics and show that its simulation is sensitive to rainout from convective anvils. Comparisons with aircraft observations up to 12-km altitude suggest that cirrus precipitation could be important for explaining the low concentrations in the middle and upper troposphere.

648 citations