scispace - formally typeset
Search or ask a question
Author

W. W. Wood

Bio: W. W. Wood is an academic researcher. The author has contributed to research in topics: Dynamic Monte Carlo method & Hybrid Monte Carlo. The author has an hindex of 1, co-authored 1 publications receiving 465 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a method for solving the simultaneous classical equation of motion of several hundred particles by means of fast electronic computers is described. But the method is not suitable for large numbers of particles.
Abstract: The method consists of solving exactly the simultaneous classical equation of motion of several hundred particles by means of fast electronic computers. (W.L.H.)

2,250 citations

Journal ArticleDOI
TL;DR: The theory of critical phenomena in systems at equilibrium is reviewed at an introductory level with special emphasis on the values of the critical point exponents α, β, γ,..., and their interrelations as mentioned in this paper.
Abstract: The theory of critical phenomena in systems at equilibrium is reviewed at an introductory level with special emphasis on the values of the critical point exponents α, β, γ,..., and their interrelations. The experimental observations are surveyed and the analogies between different physical systems - fluids, magnets, superfluids, binary alloys, etc. - are developed phenomenologically. An exact theoretical basis for the analogies follows from the equivalence between classical and quantal `lattice gases' and the Ising and Heisenberg-Ising magnetic models. General rigorous inequalities for critical exponents at and below Tc are derived. The nature and validity of the `classical' (phenomenological and mean field) theories are discussed, their predictions being contrasted with the exact results for plane Ising models, which are summarized concisely. Pade approximant and ratio techniques applied to appropriate series expansions lead to precise critical-point estimates for the three-dimensional Heisenberg and Ising models (tables of data are presented). With this background a critique is presented of recent theoretical ideas: namely, the `droplet' picture of the critical point and the `homogeneity' and `scaling' hypotheses. These lead to a `law of corresponding states' near a critical point and to relations between the various exponents which suggest that perhaps only two or three exponents might be algebraically independent for any system.

1,792 citations

Journal ArticleDOI
TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Abstract: Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micro...

1,376 citations

Journal ArticleDOI
TL;DR: In this article, an equilibrium theory of rigid sphere fluids is developed based on the properties of a new distribution function G(r) which measures the density of rigid spheres molecules in contact with a rigid sphere solute of arbitrary size.
Abstract: An equilibrium theory of rigid sphere fluids is developed based on the properties of a new distribution function G(r) which measures the density of rigid sphere molecules in contact with a rigid sphere solute of arbitrary size. A number of exact relations which describe rather fully the functional form of G(r) are derived. These are based on both geometrical considerations and the virial theorem. A knowledge of G(a) where a is the diameter of a rigid sphere enables one to arrive at the equation of state. The resulting analytical expression which is exact up to the third virial coefficient gives the fourth virial coefficient within 3% and the fifth, insofar as it is known, within 5%. Furthermore over the entire range of fluid density, the equation of state derived from theory agrees with that computed using machine methods. Theory also gives an expression for the surface tension of a hard sphere fluid in contact with a perfectly repelling wall. The dependence of surface tension on curvature is also given. ...

1,237 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of recently achieved progress in the field of soft condensed matter physics, and in particular on the study of the static properties of solutions or suspensions of colloidal particles.

1,056 citations