scispace - formally typeset
Search or ask a question
Author

W. Zhong

Bio: W. Zhong is an academic researcher. The author has contributed to research in topics: Raman scattering & Phonon. The author has an hindex of 1, co-authored 1 publications receiving 206 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first and second-order Raman scattering of zinc blende and wurtzite ZnS was studied and the origins of these vibration modes in the second order Raman spectra from these two polymorphs were identified for the first time.
Abstract: We have conducted an experimental and theoretical study on first- and second-order Raman scattering of zinc blende and wurtzite ZnS. Based on the calculated phonon band structure, phonon density of states, and symmetry selection rules, we have clearly identified for the first time the origins of these vibration modes in the second-order Raman spectra from these two polymorphs. For zinc blende ZnS, it is found that the previously estimated frequency of the LA mode at X point in the Brillouin-zone boundary is much smaller than the value obtained from other experiments and our calculation. Considering the involvement of LA phonon at X point, we reassign the second-order Raman active modes and some other modes which have not yet been understood so far. This work clarifies some of the controversial Raman mode assignments in zinc blende and wurtzite ZnS.

230 citations


Cited by
More filters
Journal ArticleDOI
Xuqiang Hao1, Yicong Wang1, Jun Zhou1, Zhiwei Cui1, Ying Wang1, Zhigang Zou1 
TL;DR: In this article, zinc vacancy defects are successfully introduced into zinc sulfide (ZnS) via adding sodium sulfide as sulfur source during the hydrothermal reaction, and the defective ZnS with different amount of zinc vacancies were employed as catalysts for the examination of vacancy-dependent catalytic activity toward photocatalytic hydrogen evolution under visible light irradiation.
Abstract: Zinc sulfide is a superior photocatalyst for H 2 evolution, whereas the wide bandgap restricts its performance to only UV region. In this work, zinc vacancy (V Zn ) defects are successfully introduced into ZnS via adding sodium sulfide as sulfur source during the hydrothermal reaction. The defective ZnS with different amount of zinc vacancies were employed as catalysts for the examination of vacancy-dependent catalytic activity toward photocatalytic hydrogen evolution under visible light irradiation. Fluorescence emission spectra and XPS results confirm that existence of abundant zinc vacancies on ZnS. These zinc vacancies exhibit remarkable effects on modifying the electronic structure of ZnS as shown in UV–visible absorption spectra and Mott–Schottky plots. Zinc vacancies can raise valence band (VB) position that weaken the oxidative capacity of the holes to protect Zn-deficient ZnS from photocorrsion. And electrochemical and photo-electrochemical experiments also demonstrate that the charge separation and the electrons transfer are more efficient with the introduction of the Zn vacancies in ZnS. The zinc-deficient ZnS-2.5 with optimum amount of Zn vacancies shows superior photocatalytic activity for H 2 evolution that reaches 337.71 ± 3.72 μmol h −1 g −1 under visible-light irradiation and also exhibits a much higher photostability. The intrinsic modify by self-defects might be a potential strategy for design novel photocatalysts with photocorrosion stability and visible-light activity in photocatalysis proton reduction.

391 citations

Journal ArticleDOI
TL;DR: In this article, confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary metal sulfides, which is a potential candidate for next generation thin film solar cells.
Abstract: Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm−1), Cu2SnS3 (298 cm−1), and Cu4SnS4 (318 cm−1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copp...

242 citations

Journal ArticleDOI
28 Jul 2014-ACS Nano
TL;DR: The synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides with tunable chemical composition were characterized by optical spectroscopy and cyclic voltammetry, which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.
Abstract: We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crysta...

128 citations

Journal ArticleDOI
TL;DR: In this article, the area ratios between the first, second, and third order peaks of ZnS identified as the T2(LO) mode decrease with increasing grain size, attributed to changes in the bandgap energy from quantum confinement due to the varying grain size between the films/particles.
Abstract: Near-resonant Raman scattering measurements of zinc sulfide nanoparticles and thin films have been made and correlated to grain and particle size, respectively, using a 325 nm wavelength excitation source. The area ratios between the first, second, and third order peaks of ZnS identified as the T2(LO) mode decrease with increasing ZnS grain size. This is an effect attributed to changes in the bandgap energy from quantum confinement due to the varying grain size between the films/particles, as noted by a shift in the room temperature photoluminescence emission corresponding to the free exciton emission energy. While Raman scattering spectroscopy is typically limited to identification of phases and their crystalline properties, it is possible to attain more than such straightforward information by calibrating the spectral features to variations between sets of samples. These results open the possibility of making a quantitative grain size estimation in ZnS thin films and nanostructures, as well as in other material systems where ZnS may be expected as a secondary phase, such as Cu2ZnSnS4. Additionally, more commonly used excitation wavelengths for Raman scattering, such as 514 and 532 nm, are shown to be of limited use in characterizing ZnS thin films due to the extremely low Raman scattering efficiency of ZnS in films with sub-micron thicknesses.

115 citations