scispace - formally typeset
Search or ask a question
Author

Wael N. Jarjour

Bio: Wael N. Jarjour is an academic researcher from Ohio State University. The author has contributed to research in topics: Lupus nephritis & Medicine. The author has an hindex of 17, co-authored 61 publications receiving 1356 citations. Previous affiliations of Wael N. Jarjour include University of Virginia Health System & The Ohio State University Wexner Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A scholarly review of the published literature on menopausal hormonal therapy (MHT), make scientifically valid assessments of the available data, and grade the level of evidence available for each clinically important endpoint to arrive at major conclusions.
Abstract: Objective: Our objective was to provide a scholarly review of the published literature on menopausal hormonal therapy (MHT), make scientifically valid assessments of the available data, and grade the level of evidence available for each clinically important endpoint. Participants in Development of Scientific Statement: The 12-member Scientific Statement Task Force of The Endocrine Society selected the leader of the statement development group (R.J.S.) and suggested experts with expertise in specific areas. In conjunction with the Task Force, lead authors (n = 25) and peer reviewers (n = 14) for each specific topic were selected. All discussions regarding content and grading of evidence occurred via teleconference or electronic and written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. Evidence: Each expert conducted extensive literature searches of case control, cohort, and randomized controlled tria...

605 citations

Journal ArticleDOI
TL;DR: It is established that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4, which is consistent with an inflammatory marker role for CD38 in human Macrophages and monocytes.
Abstract: Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.

135 citations

Journal ArticleDOI
TL;DR: The findings characterize TLR8 as a novel estrogen target gene that can lower the inflammatory threshold and implicate an IFNα-independent inflammatory mechanism that could contribute to higher SLE incidence in women.

62 citations

Journal ArticleDOI
TL;DR: Evidence supporting greater consideration of CMR to detect and quantify myocardial microvascular disease is presented, and potential directions for the development of more targeted imaging approaches are discussed.
Abstract: Vasculitis, the inflammation of blood vessels, can produce devastating complications such as blindness, renal failure, aortic rupture and heart failure through a variety of end-organ effects. Noninvasive imaging with cardiovascular magnetic resonance (CMR) has contributed to improved and earlier diagnosis. CMR may also be used in serial evaluation of such patients as a marker of treatment response and as an indicator of subsequent complications. Unique strengths of CMR favoring its use in such conditions are its abilities to noninvasively visualize both lumen and vessel wall with high resolution. This case-based review focuses on the large- and medium-vessel vasculitides where MR angiography has the greatest utility. Because of increasing recognition of cardiac involvement in small-vessel vasculitides, this review also presents evidence supporting greater consideration of CMR to detect and quantify myocardial microvascular disease. CMR’s complementary role amidst traditional clinical, serological and other diagnostic techniques in personalized care for patients with vasculitis is emphasized. Specifically, the CMR laboratory can address questions related to extent and severity of vascular involvement. As ongoing basic and translational studies better elucidate poorly-defined underlying molecular mechanisms, this review concludes with a discussion of potential directions for the development of more targeted imaging approaches.

62 citations

Journal ArticleDOI
04 Nov 2014-PLOS ONE
TL;DR: Curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and it is established that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response.
Abstract: Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response.

59 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

01 Mar 2017
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR-signaling network contributes to human disease is highlighted.
Abstract: The mechanistic target of rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR signaling network contributes to human disease and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.

2,014 citations

Journal ArticleDOI
TL;DR: Interleukin-2 signals influence various lymphocyte subsets during differentiation, immune responses and homeostasis and can amplify CD8+ T cell responses or induce the expansion of the TReg cell population, thus favouring either immune stimulation or suppression.
Abstract: Interleukin-2 (IL-2) signals influence various lymphocyte subsets during differentiation, immune responses and homeostasis. As discussed in this Review, stimulation with IL-2 is crucial for the maintenance of regulatory T (T(Reg)) cells and for the differentiation of CD4(+) T cells into defined effector T cell subsets following antigen-mediated activation. For CD8(+) T cells, IL-2 signals optimize both effector T cell generation and differentiation into memory cells. IL-2 is presented in soluble form or bound to dendritic cells and the extracellular matrix. Use of IL-2 - either alone or in complex with particular neutralizing IL-2-specific antibodies - can amplify CD8(+) T cell responses or induce the expansion of the T(Reg) cell population, thus favouring either immune stimulation or suppression.

1,305 citations

01 Jan 1995
TL;DR: Fas expression and function were analyzed in three children with a lymphoproliferative syndrome and may provide a molecular basis for some autoimmune diseases in humans.
Abstract: Fas (also known as Apo1 and CD95) is a cell surface receptor involved in apoptotic cell death. Fas expression and function were analyzed in three children (including two siblings) with a lymphoproliferative syndrome, two of whom also had autoimmune disorders. A large deletion in the gene encoding Fas and no detectable cell surface expression characterized the most affected patient. Clinical manifestations in the two related patients were less severe: Fas-mediated apoptosis was impaired and a deletion within the intracytoplasmic domain was detected. These findings illustrate the crucial regulatory role of Fas and may provide a molecular basis for some autoimmune diseases in humans.

1,194 citations

Journal ArticleDOI
02 Oct 2013-JAMA
TL;DR: Most risks and benefits dissipated postintervention, although some elevation in breast cancer risk persisted during cumulative follow-up and the 2 WHI hormone therapy trials do not support use of this therapy.
Abstract: RESULTS During the CEE plus MPA intervention phase, the numbers of CHD cases were 196 for CEE plus MPA vs 159 for placebo (hazard ratio [HR], 1.18; 95% CI, 0.95-1.45) and 206 vs 155, respectively, for invasive breast cancer (HR, 1.24; 95% CI, 1.01-1.53). Other risks included increased stroke, pulmonary embolism, dementia (in women aged65 years), gallbladder disease, and urinary incontinence; benefits included decreased hip fractures, diabetes, and vasomotor symptoms. Most risks and benefits dissipated postintervention, although some elevation in breast cancer risk persisted during cumulative follow-up (434 cases for CEE plus MPA vs 323 for placebo; HR, 1.28 [95% CI, 1.11-1.48]). The risks and benefits were more balanced during the CEE alone intervention with 204 CHD cases for CEE alone vs 222 cases for placebo (HR, 0.94; 95% CI, 0.781.14) and 104 vs 135, respectively, for invasive breast cancer (HR, 0.79; 95% CI, 0.61-1.02); cumulatively, there were 168 vs 216, respectively, cases of breast cancer diagnosed (HR, 0.79; 95% CI, 0.65-0.97). Results for other outcomes were similar to CEE plus MPA. Neither regimen affected all-cause mortality. For CEE alone, younger women (aged 50-59 years) had more favorable results for all-cause mortality, myocardial infarction, and the global index (nominal P < .05 for trend by age). Absolute risks of adverse events (measured by the global index) per 10 000 women annually taking CEE plus MPA ranged from 12 excess cases for ages of 50-59 years to 38 for ages of 70-79 years; for women taking CEE alone, from 19 fewer cases for ages of 50-59 years to 51 excess cases for ages of 70-79 years. Quality-of-life outcomes had mixed results in both trials. CONCLUSIONS AND RELEVANCE Menopausal hormone therapy has a complex pattern of risks and benefits. Findings from the intervention and extended postintervention follow-up of the 2 WHI hormone therapy trials do not support use of this therapy for chronic disease prevention, although it is appropriate for symptom management in some women.

1,181 citations