scispace - formally typeset
Search or ask a question
Author

Wahyoe S. Hantoro

Bio: Wahyoe S. Hantoro is an academic researcher from Indonesian Institute of Sciences. The author has contributed to research in topics: Monsoon & Glacial period. The author has an hindex of 26, co-authored 56 publications receiving 3296 citations. Previous affiliations of Wahyoe S. Hantoro include Centre national de la recherche scientifique & University of Queensland.


Papers
More filters
Journal ArticleDOI
TL;DR: Foraminiferal Mg/Ca, alkenone, and revised coral Sr/Ca palaeothermometry have been used to reveal that the tropical Pacific played a role as a source region of water vapour during the global expansion of Little Ice Age glaciers.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize existing clay mineralogical and geochemical data from similar to 1500 samples from the seafloor and surrounding rivers, deepwater mooring observation results, and high resolution glacial-cyclic clay mineralogy records from six high-quality sediment cores.

329 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia.
Abstract: The Australian–Indonesian summer monsoon affects rainfall variability across the Indo–Pacific region. Reconstructions of monsoon strength from stalagmites show that precipitation increased from 11,000 to 7,000 years ago, as rising global sea level caused the flooding of the Indonesian continental shelf. The Australian–Indonesian summer monsoon affects rainfall variability and hence terrestrial productivity in the densely populated tropical Indo–Pacific region. It has been proposed that the main control of summer monsoon precipitation on millennial timescales is local insolation1,2,3, but unravelling the mechanisms that have influenced monsoon variability and teleconnections has proven difficult, owing to the lack of high-resolution records of past monsoon behaviour. Here we present a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia. We show that the summer monsoon precipitation increased during the Younger Dryas cooling event, when Atlantic meridional overturning circulation was relatively weak4. Monsoon precipitation intensified even more rapidly from 11,000 to 7,000 years ago, when the Indonesian continental shelf was flooded by global sea-level rise5,6,7. We suggest that the intensification during the Younger Dryas cooling was caused by enhanced winter monsoon outflow from Asia and a related southward migration of the intertropical convergence zone8. However, the early Holocene intensification of monsoon precipitation was driven by sea-level rise, which increased the supply of moisture to the Indonesian archipelago.

321 citations

Journal ArticleDOI
TL;DR: The authors used a suite of coral oxygen-isotope records to reconstruct a basin-wide index of IOD behavior since AD'46 and found that the recent intensification of the IOD coincides with the development of direct, positive IOD-monsoon feedbacks.
Abstract: Coral records from a range of sites extend the index of the Indian Ocean Dipole back to 1846. Indian Ocean Dipole events increased in strength and frequency in the twentieth century, coincident with the development of direct feedbacks with the Asian Monsoon. The interplay of the El Nino Southern Oscillation, Asian monsoon and Indian Ocean Dipole (IOD)1,2,3 drives climatic extremes in and around the Indian Ocean. Historical4,5 and proxy6,7,8,9 records reveal changes in the behaviour of the El Nino Southern Oscillation and the Asian monsoon over recent decades10,11,12. However, reliable instrumental records of the IOD cover only the past 50 years1,3, and there is no consensus on long-term variability of the IOD or its possible response to greenhouse gas forcing13. Here we use a suite of coral oxygen-isotope records to reconstruct a basin-wide index of IOD behaviour since AD 1846. Our record reveals an increase in the frequency and strength of IOD events during the twentieth century, which is associated with enhanced seasonal upwelling in the eastern Indian Ocean. Although the El Nino Southern Oscillation has historically influenced the variability of both the IOD and the Asian monsoon3,8,10, we find that the recent intensification of the IOD coincides with the development of direct, positive IOD–monsoon feedbacks. We suggest that projected greenhouse warming may lead to a redistribution of rainfall across the Indian Ocean and a growing interdependence between the IOD and Asian monsoon precipitation variability.

274 citations

Journal ArticleDOI
15 Aug 2003-Science
TL;DR: In this paper, the authors show that iron fertilization by the 1997 Indonesian wildfires was sufficient to produce the extraordinary red tide, leading to reef death by asphyxiation, highlighting tropical wildfires as an escalating threat to coastal marine ecosystems.
Abstract: Geochemical anomalies and growth discontinuities in Porites corals from western Sumatra, Indonesia, record unanticipated reef mortality during anomalous Indian Ocean Dipole upwelling and a giant red tide in 1997. Sea surface temperature reconstructions show that although some past upwelling events have been stronger, there were no analogous episodes of coral mortality during the past 7000 years, indicating that the 1997 red tide was highly unusual. We show that iron fertilization by the 1997 Indonesian wildfires was sufficient to produce the extraordinary red tide, leading to reef death by asphyxiation. These findings highlight tropical wildfires as an escalating threat to coastal marine ecosystems.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Variable Infiltration Capacity model, a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights, is presented and it is shown that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
Abstract: The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.

2,895 citations

Journal ArticleDOI
TL;DR: The authors used selected proxy-based reconstructions of different climate variables, together with state-of-the-art time series of natural forcings (orbital variations, solar activity variations, large tropical volcanic eruptions, land cover and greenhouse gases), underpinned by results from GCMs and Earth System Models of Intermediate Complexity (EMICs), to establish a comprehensive explanatory framework for climate changes from the mid-Holocene (MH) to pre-industrial time.

1,539 citations

Journal ArticleDOI
19 Jun 2003-Nature
TL;DR: A hydraulic model of the water exchange between the Red Sea and the world ocean is used to derive the sill depth—and hence global sea level—over the past 470,000 years, finding that sea-level changes of up to 35 m occurred, coincident with abrupt changes in climate.
Abstract: The last glacial cycle was characterized by substantial millennial-scale climate fluctuations1,2,3,4,5, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces6,7, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios at millennial-scale resolution8 or higher1. Records based on oxygen isotopes, however, contain uncertainties in the range of ±30 m, or ±1 °C in deep sea temperature9,10. Here we analyse oxygen isotope records from Red Sea sediment cores to reconstruct the history of water residence times in the Red Sea. We then use a hydraulic model of the water exchange between the Red Sea and the world ocean to derive the sill depth—and hence global sea level—over the past 470,000 years (470 kyr). Our reconstruction is accurate to within ±12 m, and gives a centennial-scale resolution from 70 to 25 kyr before present. We find that sea-level changes of up to 35 m, at rates of up to 2 cm yr-1, occurred, coincident with abrupt changes in climate.

1,485 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: Recon reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time, and regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records are provided.
Abstract: Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.

1,281 citations

Journal ArticleDOI
01 Aug 2002-Weather
TL;DR: In this paper, the authors emphasise that the certainty of conclusions that can be drawn about climate from observations depends critically on the availability of accurate, complete and consistent series of observations.
Abstract: Chapter 2 emphasises change against a background of variability. The certainty of conclusions that can be drawn about climate from observations depends critically on the availability of accurate, complete and consistent series of observations. For many variables important in documenting, detecting, and attributing climate change, data are still not good enough for really firm conclusions to be reached. This especially applies to global trends in variables that have large regional variations, such as pre-

1,220 citations