scispace - formally typeset
Search or ask a question
Author

Walaa Hamouda

Bio: Walaa Hamouda is an academic researcher from Concordia University. The author has contributed to research in topics: Fading & MIMO. The author has an hindex of 26, co-authored 266 publications receiving 3666 citations. Previous affiliations of Walaa Hamouda include Queen's University & Concordia University Wisconsin.
Topics: Fading, MIMO, Relay, Cognitive radio, Throughput


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides a survey-style introduction to dense small cell networks and considers many research directions, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment.
Abstract: The exponential growth and availability of data in all forms is the main booster to the continuing evolution in the communications industry. The popularization of traffic-intensive applications including high definition video, 3-D visualization, augmented reality, wearable devices, and cloud computing defines a new era of mobile communications. The immense amount of traffic generated by today’s customers requires a paradigm shift in all aspects of mobile networks. Ultradense network (UDN) is one of the leading ideas in this racetrack. In UDNs, the access nodes and/or the number of communication links per unit area are densified. In this paper, we provide a survey-style introduction to dense small cell networks. Moreover, we summarize and compare some of the recent achievements and research findings. We discuss the modeling techniques and the performance metrics widely used to model problems in UDN. Also, we present the enabling technologies for network densification in order to understand the state-of-the-art. We consider many research directions in this survey, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment. Finally, we discuss the challenges and open problems to the researchers in the field or newcomers who aim to conduct research in this interesting and active area of research.

828 citations

Journal ArticleDOI
TL;DR: This survey paper focuses on the enabling techniques for interweave CR networks which have received great attention from standards perspective due to its reliability to achieve the required quality-of-service.
Abstract: Due to the under-utilization problem of the allocated radio spectrum, cognitive radio (CR) communications have recently emerged as a reliable and effective solution. Among various network models, this survey paper focuses on the enabling techniques for interweave CR networks which have received great attention from standards perspective due to its reliability to achieve the required quality-of-service. Spectrum sensing provides the essential information to enable this interweave communications in which primary and secondary users are not allowed to access the medium concurrently. Several researchers have already considered various aspects to realize efficient techniques for spectrum sensing. In this direction, this survey paper provides a detailed review of the state-of-the-art related to the application of spectrum sensing in CR communications. Starting with the basic principles and the main features of interweave communications, this paper provides a classification of the main approaches based on the radio parameters. Subsequently, we review the existing spectrum sensing works applied to different categories such as narrowband sensing, narrowband spectrum monitoring, wideband sensing, cooperative sensing, practical implementation considerations for various techniques, and the recent standards that rely on the interweave network model. Furthermore, we present the latest advances related to the implementation of the legacy spectrum sensing approaches. Finally, we conclude this survey paper with some suggested open research challenges and future directions for the CR networks in next generation Internet-of-Things applications.

483 citations

Journal ArticleDOI
TL;DR: A taxonomy that categorizes the RA algorithms proposed in literature based on the approaches, criteria, common techniques, and network architecture is provided and the state-of-the-art resource allocation algorithms are reviewed according to the provided taxonomy.
Abstract: For conventional wireless networks, the main target of resource allocation (RA) is to efficiently utilize the available resources. Generally, there are no changes in the available spectrum, thus static spectrum allocation policies were adopted. However, these allocation policies lead to spectrum under-utilization. In this regard, cognitive radio networks (CRNs) have received great attention due to their potential to improve the spectrum utilization. In general, efficient spectrum management and resource allocation are essential and very crucial for CRNs. This is due to the fact that unlicensed users should attain the most benefit from accessing the licensed spectrum without causing adverse interference to the licensed ones. The cognitive users or called secondary users have to effectively capture the arising spectrum opportunities in time, frequency, and space to transmit their data. Mainly, two aspects characterize the resource allocation for CRNs: 1) primary (licensed) network protection and 2) secondary (unlicensed) network performance enhancement in terms of quality-of-service, throughput, fairness, energy efficiency, etc. CRNs can operate in one of three known operation modes: 1) interweave; 2) overlay; and 3) underlay. Among which the underlay cognitive radio mode is known to be highly efficient in terms of spectrum utilization. This is because the unlicensed users are allowed to share the same channels with the active licensed users under some conditions. In this paper, we provide a survey for resource allocation in underlay CRNs. In particular, we first define the RA process and its components for underlay CRNs. Second, we provide a taxonomy that categorizes the RA algorithms proposed in literature based on the approaches, criteria, common techniques, and network architecture. Then, the state-of-the-art resource allocation algorithms are reviewed according to the provided taxonomy. Additionally, comparisons among different proposals are provided. Finally, directions for future research are outlined.

200 citations

Journal ArticleDOI
TL;DR: It is shown how traditional practices for intrusion detection in IoT are unsuitable due to their inherent features providing poor coverage of the IoT domain, and a proposal for future directions in IoT based IDS is presented and evaluated.
Abstract: The Internet-of-Things (IoT) is rapidly becoming ubiquitous. However the heterogeneous nature of devices and protocols in use, the sensitivity of the data contained within, as well as the legal and privacy issues, make security for the IoT a growing research priority and industry concern. With many security practices being unsuitable due to their resource intensive nature, it is deemed important to include second line defences into IoT networks. These systems will also need to be assessed for their efficacy in a variety of different network types and protocols. To shed light on these issues, this paper is concerned with advancements in intrusion detection practices in IoT. It provides a comprehensive review of current intrusion detection systems (IDSs) for IoT technologies, focusing on architecture types. A proposal for future directions in IoT based IDS are then presented and evaluated. We show how traditional practices are unsuitable due to their inherent features providing poor coverage of the IoT domain. In order to develop a secure, robust and optimized solution for these networks, the current research for intrusion detection in IoT will need to move in a different direction. An example of which is proposed in order to illustrate how malicious nodes might be passively detected.

150 citations

Journal ArticleDOI
TL;DR: This paper proposes a method for scheduling a community's power consumption such that it becomes almost flat, which makes it possible to have a relatively constant billing rate and eliminates operational inefficiencies.
Abstract: The processing and communication capabilities of the smart grid provide a solid foundation for enhancing its efficiency and reliability. These capabilities allow utility companies to adjust their offerings in a way that encourages consumers to reduce their peak hour consumption, resulting in a more efficient system. In this paper, we propose a method for scheduling a community's power consumption such that it becomes almost flat. Our methodology utilizes distributed schedulers that allocate time slots to soft loads probabilistically based on precalculated and predistributed demand forecast information. This approach requires no communication or coordination between scheduling nodes. Furthermore, the computation performed at each scheduling node is minimal. Obtaining a relatively constant consumption makes it possible to have a relatively constant billing rate and eliminates operational inefficiencies. We also analyze the fairness of our proposed approach, the effect of the possible errors in the demand forecast, and the participation incentives for consumers.

105 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Book ChapterDOI
01 Jan 1998

1,532 citations

Journal ArticleDOI
01 Dec 2017
TL;DR: This work provides a comprehensive overview of the state of the art in power-domain multiplexing-aided NOMA, with a focus on the theoretical N OMA principles, multiple-antenna- aided NomA design, and on the interplay between NOMa and cooperative transmission.
Abstract: Driven by the rapid escalation of the wireless capacity requirements imposed by advanced multimedia applications (e.g., ultrahigh-definition video, virtual reality, etc.), as well as the dramatically increasing demand for user access required for the Internet of Things (IoT), the fifth-generation (5G) networks face challenges in terms of supporting large-scale heterogeneous data traffic. Nonorthogonal multiple access (NOMA), which has been recently proposed for the third-generation partnership projects long-term evolution advanced (3GPP-LTE-A), constitutes a promising technology of addressing the aforementioned challenges in 5G networks by accommodating several users within the same orthogonal resource block. By doing so, significant bandwidth efficiency enhancement can be attained over conventional orthogonal multiple-access (OMA) techniques. This motivated numerous researchers to dedicate substantial research contributions to this field. In this context, we provide a comprehensive overview of the state of the art in power-domain multiplexing-aided NOMA, with a focus on the theoretical NOMA principles, multiple-antenna-aided NOMA design, on the interplay between NOMA and cooperative transmission, on the resource control of NOMA, on the coexistence of NOMA with other emerging potential 5G techniques and on the comparison with other NOMA variants. We highlight the main advantages of power-domain multiplexing NOMA compared to other existing NOMA techniques. We summarize the challenges of existing research contributions of NOMA and provide potential solutions. Finally, we offer some design guidelines for NOMA systems and identify promising research opportunities for the future.

1,008 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of various DR schemes and programs, based on the motivations offered to the consumers to participate in the program, and presents various optimization models for the optimal control of the DR strategies that have been proposed so far.
Abstract: The smart grid concept continues to evolve and various methods have been developed to enhance the energy efficiency of the electricity infrastructure. Demand Response (DR) is considered as the most cost-effective and reliable solution for the smoothing of the demand curve, when the system is under stress. DR refers to a procedure that is applied to motivate changes in the customers' power consumption habits, in response to incentives regarding the electricity prices. In this paper, we provide a comprehensive review of various DR schemes and programs, based on the motivations offered to the consumers to participate in the program. We classify the proposed DR schemes according to their control mechanism, to the motivations offered to reduce the power consumption and to the DR decision variable. We also present various optimization models for the optimal control of the DR strategies that have been proposed so far. These models are also categorized, based on the target of the optimization procedure. The key aspects that should be considered in the optimization problem are the system's constraints and the computational complexity of the applied optimization algorithm.

854 citations

Journal ArticleDOI
TL;DR: This paper provides a survey-style introduction to dense small cell networks and considers many research directions, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment.
Abstract: The exponential growth and availability of data in all forms is the main booster to the continuing evolution in the communications industry. The popularization of traffic-intensive applications including high definition video, 3-D visualization, augmented reality, wearable devices, and cloud computing defines a new era of mobile communications. The immense amount of traffic generated by today’s customers requires a paradigm shift in all aspects of mobile networks. Ultradense network (UDN) is one of the leading ideas in this racetrack. In UDNs, the access nodes and/or the number of communication links per unit area are densified. In this paper, we provide a survey-style introduction to dense small cell networks. Moreover, we summarize and compare some of the recent achievements and research findings. We discuss the modeling techniques and the performance metrics widely used to model problems in UDN. Also, we present the enabling technologies for network densification in order to understand the state-of-the-art. We consider many research directions in this survey, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment. Finally, we discuss the challenges and open problems to the researchers in the field or newcomers who aim to conduct research in this interesting and active area of research.

828 citations