scispace - formally typeset
Search or ask a question
Author

Walter J. Weber

Bio: Walter J. Weber is an academic researcher from University of Michigan. The author has contributed to research in topics: Sorption & Adsorption. The author has an hindex of 65, co-authored 206 publications receiving 21260 citations. Previous affiliations of Walter J. Weber include Harvard University & Universidade Federal de Santa Catarina.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that the rate of adsorption of persistent organic compounds on granular carbon is quite low and the rate is partially a function of the pore size distribution of the adsorbent, of the molecular size and configuration of the solute, and of the relative electrokinetic properties of adsorbate and adsorbents.
Abstract: Laboratory investigations show that rates of adsorption of persistent organic compounds on granular carbon are quite low. Intraparticle diffusion of solute appears to control the rate of uptake, thus the rate is partially a function of the pore size distribution of the adsorbent, of the molecular size and configuration of the solute, and of the relative electrokinetic properties of adsorbate and adsorbent. Systemic factors such as temperature and pH will influence the rates of adsorption; rates increase with increasing temperature and decrease with increasing pH. The effect of initial concentration of solute is of considerable significance, the rate of uptake being a linear function of the square-root of concentration within the range of experimentation. Relative reaction rates also vary reciprocally with the square of the diameter of individual carbon particle for a given weight of carbon. Based on the findings of the research, fluidized-bed operation is suggested as an efficient means of using adsorption for treatment of waters and waste waters.

7,115 citations

Book
01 Jan 1972
TL;DR: In this article, the Physicochemical processes for water quality contro, the authors propose a method to control the water quality in a water supply system by using Physically-Chemical Processes for Water Quality Control.
Abstract: Physicochemical processes for water quality contro , Physicochemical processes for water quality contro , کتابخانه دیجیتال جندی شاپور اهواز

1,103 citations

Journal ArticleDOI
TL;DR: The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints.
Abstract: The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines,

1,033 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the experimental measurement and mathematical modeling of processes affecting the dissolution of nonaqueous phase liquids (NAPLs) entrapped in sandy porous media.
Abstract: This work focuses on the experimental measurement and mathematical modeling of processes affecting the dissolution of nonaqueous phase liquids (NAPLs) entrapped in sandy porous media. Results of a series of laboratory-scale one-dimensional column dissolution experiments indicate that the length of time required to dissolve NAPLs and substantially reduce aqueous phase effluent concentrations is many times greater than predicted by equilibrium calculations. Experimental measurements clearly show an influence of both grain size and grain size distribution on the evolution of effluent concentrations. The longer cleaning times associated with coarse or graded media are attributed to the larger and more amorphous NAPL blobs associated with these media. A general correlation for transient dissolution rates is proposed which incorporates porous medium properties, Reynolds number, and volumetric fraction of NAPL. The model is calibrated with results from styrene dissolution experiments and is shown to adequately predict trichloroethylene dissolution rates in the same sandy media over the period of time required to dissolve the NAPL.

523 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured isotherms in the presence of fixed quantities of a polar cosolvent (methanol) and calculated desorption enthalpies from the temperature dependence of the isotherm.
Abstract: Mechanisms of phenanthrene desorption from five subsurface materials in supercritical carbon dioxide (SC CO2) were investigated by measuring isotherms in the presence of fixed quantities of a polar cosolvent (methanol) and by calculating desorption enthalpies from the temperature dependence of the isotherms. The addition of 7.4 mol % methanol to the SC CO2 phase resulted in 2−11-fold reductions in Freundlich capacity factors at 120 atm and 50 °C. The capacity reduction greatly exceeded that expected from the 21% increase in phenanthrene solubility accompanying cosolvent addition. Isotherms became more linear at 120 atm and 50 °C upon methanol addition for all sorbents except a shale sample. Solubility and organic carbon-normalized phenanthrene sorption capacities declined with increasing solvent polarity, in the order dry SC CO2 > methanol-amended SC CO2 > aqueous solution, and declined with sorbent organic carbon content. Sorption enthalpies from an ideal gas reference state ranged from −106 to −70 kJ/mo...

493 citations


Cited by
More filters
Book
01 Jun 1989
TL;DR: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities.
Abstract: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater. The ways in which solutes are taken up or precipitated and the amounts present in solution are influenced by many environmental factors, especially climate, structure and position of rock strata, and biochemical effects associated with life cycles of plants and animals, both microscopic and macroscopic. Taken together and in application with the further influence of the general circulation of all water in the hydrologic cycle, the chemical principles and environmental factors form a basis for the developing science of natural-water chemistry. Fundamental data used in the determination of water quality are obtained by the chemical analysis of water samples in the laboratory or onsite sensing of chemical properties in the field. Sampling is complicated by changes in the composition of moving water and by the effects of particulate suspended material. Some constituents are unstable and require onsite determination or sample preservation. Most of the constituents determined are reported in gravimetric units, usually milligrams per liter or milliequivalents

6,271 citations

Journal ArticleDOI
TL;DR: In this paper, the sorption of two dyes, namely Basic Blue 69 and Acid Blue 25 onto peat has been studied in terms of pseudo-second order and first order mechanisms for chemical sorption as well as an intraparticle diffusion mechanism process.

3,502 citations

Journal ArticleDOI
TL;DR: In this paper, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed.
Abstract: Fenton chemistry encompasses reactions of hydrogen peroxide in the presence of iron to generate highly reactive species such as the hydroxyl radical and possibly others. In this review, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed. The review covers modified versions including the photoassisted Fenton reaction, use of chelated iron, electro-Fenton reactions, and Fenton reactions using heterogeneous catalysts. Sections are devoted to nonclassical pathways, by-products, kinetics and process modeling, experimental design methodology, soil and aquifer treatment, use of Fenton in combination with other advanced oxidation processes or biodegradation, economic comparison with other advanced oxidation processes, and case studies.

3,218 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too.

3,163 citations