scispace - formally typeset
Search or ask a question
Author

Walter Perrie

Other affiliations: Oak Ridge National Laboratory
Bio: Walter Perrie is an academic researcher from University of Liverpool. The author has contributed to research in topics: Laser & Femtosecond. The author has an hindex of 28, co-authored 99 publications receiving 2117 citations. Previous affiliations of Walter Perrie include Oak Ridge National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a brief review is given regarding ultrafast laser micromachining of materials and some general experimental observations are first provided to show the characteristics of ultrafast LMMM.
Abstract: A brief review is given regarding ultrafast laser micromachining of materials. Some general experimental observations are first provided to show the characteristics of ultrafast laser micromachining. Apart from empirical research, mathematical models also appear to allow for a further and systematic understanding of these phenomena. A few fundamental ultrafast laser micromachining mechanisms are addressed in an attempt to highlight the physics behind the experimental observations and the mathematical models. It is supposed that a vivid view of ultrafast laser micromachining has been presented by linking experimental observations, mathematical models and the behind physics.

322 citations

Journal ArticleDOI
TL;DR: In this article, high throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM), which can be modulated in real time by computer generated holograms (CGHs).

115 citations

Journal ArticleDOI
TL;DR: In this paper, the use of a liquid-crystal spatial light modulator (SLM) device to convert a linearly polarized femtosecond laser beam into a radially or azimuthally polarized vortex beam is demonstrated.
Abstract: The use of a liquid-crystal spatial light modulator (SLM) device to convert a linearly polarized femtosecond laser beam into a radially or azimuthally polarized vortex beam is demonstrated. In order to verify the state of polarization at the focal plane, laser induced periodic surface structures (LIPSS) are produced on stainless steel, imprinting the complex vectorial polarization structures and confirming the efficacy of the SLM in producing the desired polarization modes. Stainless steel plates of various thicknesses are micromachined with the radially and azimuthally polarized vortex beams and the resulting cut-outs are analysed. The process efficiency and quality of each mode are compared with those of circular polarization. Radial polarization is confirmed to be the most efficient mode for machining high-aspect-ratio (depth/width > 3) channels thanks to its relatively higher absorptivity. Following our microprocessing tests, liquid-crystal SLMs emerged as a flexible off-the-shelf tool for producing radially and azimuthally polarized beams in existing ultrashort-pulse laser microprocessing systems.

106 citations

Journal ArticleDOI
TL;DR: In this article, the Gratings and Lenses algorithm was used to calculate computer generated holograms (CGHs) producing diffractive multiple beams for the parallel processing of femtosecond laser surface micro-structuring.

96 citations

Journal ArticleDOI
TL;DR: In this paper, an al2O3 ceramic has been micro-structured in air using 180 fs, l = 775 nm optical pulses in a fluence range 1.4 < F < 21 J cm � 2 with observed ablation rates of 25 < V < 900 mm 3 /pulse.

92 citations


Cited by
More filters
Book
12 Mar 2014
TL;DR: In this paper, the effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1).
Abstract: In the laser treatment of a workpiece (9), e.g. for surface hardening, melting, alloying, cladding, welding or cutting, the adverse effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1). The two beams (1)(5) may be combined by a beam coupler (4) or may reach the workpiece (9) by separate optical paths (not shown). The shorter wavelength beam (1) improves the coupling efficiency of the higher- powered laser beam (5).

1,539 citations

Journal ArticleDOI
TL;DR: The authors survey the steady refinement of techniques used to create optical vortices, and explore their applications, which include sophisticated optical computing processes, novel microscopy and imaging techniques, the creation of ‘optical tweezers’ to trap particles of matter, and optical machining using light to pattern structures on the nanoscale.
Abstract: Thirty years ago, Coullet et al. proposed that a special optical field exists in laser cavities bearing some analogy with the superfluid vortex. Since then, optical vortices have been widely studied, inspired by the hydrodynamics sharing similar mathematics. Akin to a fluid vortex with a central flow singularity, an optical vortex beam has a phase singularity with a certain topological charge, giving rise to a hollow intensity distribution. Such a beam with helical phase fronts and orbital angular momentum reveals a subtle connection between macroscopic physical optics and microscopic quantum optics. These amazing properties provide a new understanding of a wide range of optical and physical phenomena, including twisting photons, spin-orbital interactions, Bose-Einstein condensates, etc., while the associated technologies for manipulating optical vortices have become increasingly tunable and flexible. Hitherto, owing to these salient properties and optical manipulation technologies, tunable vortex beams have engendered tremendous advanced applications such as optical tweezers, high-order quantum entanglement, and nonlinear optics. This article reviews the recent progress in tunable vortex technologies along with their advanced applications.

1,016 citations

Journal ArticleDOI
TL;DR: Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts.
Abstract: Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials,...

892 citations

Journal ArticleDOI
TL;DR: The fundamental mechanisms of laser ablation in liquids are summarized, organized according to their temporal sequence and correlated with relevant examples taken from the library of nanomaterials disclosed by LASiS, in order to show how synthesis parameters influence the composition and the structure of products.
Abstract: Laser ablation synthesis in liquid solution (LASiS) is a “green” technique that gives access to the preparation of a library of nanomaterials. Bare noble metal spherical particles, multiphase core–shell oxides, metal–semiconductor heterostructures, layered organometallic compounds and other complex nanostructures can be obtained with the same experimental set up, just by varying a few synthetic parameters. How to govern such versatility is one of the current challenges of LASiS and requires a thorough understanding of the physical and chemical processes involved in the synthesis. In this perspective, the fundamental mechanisms of laser ablation in liquids are summarized, organized according to their temporal sequence and correlated with relevant examples taken from the library of nanomaterials disclosed by LASiS, in order to show how synthesis parameters influence the composition and the structure of products. The resulting framework suggests that, to date, much attention has been devoted to the physical aspects of laser–matter interaction and to the characterization of the final products of the synthesis. Conversely, the clarification of chemical processes active during LASiS deserves more research efforts and requires the synergy among multiple investigation techniques.

587 citations