scispace - formally typeset
Search or ask a question
Author

Walter R. Roest

Bio: Walter R. Roest is an academic researcher from IFREMER. The author has contributed to research in topics: Magnetic anomaly & Seafloor spreading. The author has an hindex of 36, co-authored 114 publications receiving 8417 citations. Previous affiliations of Walter R. Roest include Utrecht University & Natural Resources Canada.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a digital model of the age, spreading rate, and asymmetry at each grid node by linear interpolation between adjacent seafloor isochrons in the direction of spreading.
Abstract: We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.

1,731 citations

Journal ArticleDOI
TL;DR: In this article, a new method for magnetic interpretation based on the generalization of the analytic signal concept to three dimensions was developed, where the absolute value of the signal is defined as the square root of the squared sum of the vertical and the two horizontal derivatives of the magnetic field.
Abstract: A new method for magnetic interpretation has been developed based on the generalization of the analytic signal concept to three dimensions. The absolute value of the analytic signal is defined as the square root of the squared sum of the vertical and the two horizontal derivatives of the magnetic field. This signal exhibits maxima over magnetization contrasts, independent of the ambient magnetic field and source magnetization directions. Locations of these maxima thus determine the outlines of magnetic sources. Under the assumption that the anomalies are caused by vertical contacts, the analytic signal is used to estimate depth using a simple amplitude half-width rule. Two examples are shown of the application of the method. In the first example, the analytic signal highlights a circular feature beneath Lake Huron that has been identified as a possible impact crater. The second example illustrates the continuation of terranes across the Cabot Strait between Cape Breton and Newfoundland in eastern Canada.

1,029 citations

Journal ArticleDOI
TL;DR: In this paper, a digital age grid of the ocean floor with a grid node interval of 6 arc min using a self-consistent set of global isochrons and associated plate reconstruction poles was created.
Abstract: We have created a digital age grid of the ocean floor with a grid node interval of 6 arc min using a self-consistent set of global isochrons and associated plate reconstruction poles. The age at each grid node was determined by linear interpolation between adjacent isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust were interpolated by estimating the ages of passive continental margin segments from geological data and published plate models. We have constructed an age grid with error estimates for each grid cell as a function of (1) the error of ocean floor ages identified from magnetic anomalies along ship tracks and the age of the corresponding grid cells in our age grid, (2) the distance of a given grid cell to the nearest magnetic anomaly identification, and (3) the gradient of the age grid: i.e., larger errors are associated with high age gradients at fracture zones or other age discontinuities. Future applications of this digital grid include studies of the thermal and elastic structure of the lithosphere, the heat loss of the Earth, ridge-push forces through time, asymmetry of spreading, and providing constraints for seismic tomography and mantle convection models.

772 citations

Journal Article
TL;DR: In this article, a digital age grid of the ocean floor with a grid node interval of 6 arc min using a self-consistent set of global isochrons and associated plate reconstruction poles was created.
Abstract: We have created a digital age grid of the ocean floor with a grid node interval of 6 arc min using a self-consistent set of global isochrons and associated plate reconstruction poles. The age at each grid node was determined by linear interpolation between adjacent isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust were interpolated by estimating the ages of passive continental margin segments from geological data and published plate models. We have constructed an age grid with error estimates for each grid cell as a function of (1) the error of ocean floor ages identified from magnetic anomalies along ship tracks and the age of the corresponding grid cells in our age grid, (2) the distance of a given grid cell to the nearest magnetic anomaly identification, and (3) the gradient of the age grid: i.e., larger errors are associated with high age gradients at fracture zones or other age discontinuities. Future applications of this digital grid include studies of the thermal and elastic structure of the lithosphere, the heat loss of the Earth, ridge-push forces through time, asymmetry of spreading, and providing constraints for seismic tomography and mantle convection models.

752 citations

Journal ArticleDOI
TL;DR: A detailed aeromagnetic survey carried out in the Newfoundland Basin shows well developed seafloor spreading anomalies 24 to 34 as discussed by the authors, which has been interpreted as arising from shifts in the plate boundary between Africa and Eurasia during the time when Iberia was moving as part of the African plate.

325 citations


Cited by
More filters
Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, a digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft.
Abstract: A digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft. Previous global bathymetric maps lacked features such as the 1600-kilometer-long Foundation Seamounts chain in the South Pacific. This map shows relations among the distributions of depth, sea floor area, and sea floor age that do not fit the predictions of deterministic models of subsidence due to lithosphere cooling but may be explained by a stochastic model in which randomly distributed reheating events warm the lithosphere and raise the ocean floor.

4,433 citations

Journal ArticleDOI
TL;DR: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used as discussed by the authors.
Abstract: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used Tectonic implications of the patterns that emerged from the results are discussed It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; eg, between the Indian and Australian plates and between the North American and South American plates Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates

3,409 citations

01 Jan 1988
TL;DR: In this paper, a new global model (NUVEL-1) was proposed to describe the geologically current motion between 12 assumed-rigid plates by inverting plate motion data.
Abstract: SUMMARY We determine best-fitting Euler vectors, closure-fitting Euler vectors, and a new global model (NUVEL-1) describing the geologically current motion between 12 assumed-rigid plates by inverting plate motion data we have compiled, critically analysed, and tested for self-consistency. We treat Arabia, India and Australia, and North America and South America as distinct plates, but combine Nubia and Somalia into a single African plate because motion between them could not be reliably resolved. The 1122 data from 22 plate boundaries inverted to obtain NUVEL-1 consist of 277 spreading rates, 121 transform fault azimuths, and 724 earthquake slip vectors. We determined all rates over a uniform time interval of 3.0m.y., corresponding to the centre of the anomaly 2A sequence, by comparing synthetic magnetic anomalies with observed profiles. The model fits the data well. Unlike prior global plate motion models, which systematically misfit some spreading rates in the Indian Ocean by 8–12mm yr−1, the systematic misfits by NUVEL-1 nowhere exceed ∼3 mm yr−1. The model differs significantly from prior global plate motion models. For the 30 pairs of plates sharing a common boundary, 29 of 30 P071, and 25 of 30 RM2 Euler vectors lie outside the 99 per cent confidence limits of NUVEL-1. Differences are large in the Indian Ocean where NUVEL-1 plate motion data and plate geometry differ from those used in prior studies and in the Pacific Ocean where NUVEL-1 rates are systematically 5–20 mm yr−1 slower than those of prior models. The strikes of transform faults mapped with GLORIA and Seabeam along the Mid-Atlantic Ridge greatly improve the accuracy of estimates of the direction of plate motion. These data give Euler vectors differing significantly from those of prior studies, show that motion about the Azores triple junction is consistent with plate circuit closure, and better resolve motion between North America and South America. Motion of the Caribbean plate relative to North or South America is about 7 mm yr−1 slower than in prior global models. Trench slip vectors tend to be systematically misfit wherever convergence is oblique, and best-fitting poles determined only from trench slip vectors differ significantly from their corresponding closure-fitting Euler vectors. The direction of slip in trench earthquakes tends to be between the direction of plate motion and the normal to the trench strike. Part of this bias may be due to the neglect of lateral heterogeneities of seismic velocities caused by cold subducting slabs, but the larger part is likely caused by independent motion of fore-arc crust and lithosphere relative to the overriding plate.

3,328 citations

Journal ArticleDOI
TL;DR: MORVEL as discussed by the authors is a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface.
Abstract: SUMMARY We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit—MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6–2.6 mm yr−1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca–Antarctic and Nazca–Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean–North America and Caribbean–South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia–Eurasia and India–Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific–North America plate motion in western North America differ by only 2.6 ± 1.7 mm yr−1, ≈25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific–North America motion over the past 1–3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific–Cocos–Nazca and Sur–Nubia–Antarctic, fail closure, with respective linear velocities of non-closure of 14 ± 5 and 3 ± 1 mm yr−1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but—absent any unrecognized systematic errors—the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

2,089 citations

Journal ArticleDOI
TL;DR: In this paper, a global set of present plate boundaries on the Earth is presented in digital form, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and geodesy.
Abstract: [1] A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as “orogens” in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge, oceanic transform fault, oceanic convergent boundary, subduction zone). Total length, mean velocity, and total rate of area production/destruction are computed for each class; the global rate of area production and destruction is 0.108 m2/s, which is higher than in previous models because of the incorporation of back-arc spreading.

1,853 citations