scispace - formally typeset
Search or ask a question
Author

Wan Haslina Hassan

Bio: Wan Haslina Hassan is an academic researcher from Universiti Teknologi Malaysia. The author has contributed to research in topics: Wireless network & Handover. The author has an hindex of 13, co-authored 72 publications receiving 783 citations. Previous affiliations of Wan Haslina Hassan include Sunway University & International Institute of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents an analysis of recent research in IoT security from 2016 to 2018, its trends and open issues, and the relevant tools, modellers and simulators.

537 citations

Journal ArticleDOI
TL;DR: In many countries, the Internet of Medical Things has been deployed in tandem with other strategies to curb the spread of COVID-19, improve the safety of front-line personnel, increase efficacy by lessening the severity of the disease on human lives, and decrease mortality rates.

120 citations

Journal ArticleDOI
TL;DR: The main challenges and requirements for trust in VANETs are revealed and future research within this scope is revealed to increase quality of data in transportation.
Abstract: The basis of vehicular ad hoc networks (VANETs) is the exchange of data between entities, and making a decision on received data/event is usually based on information provided by other entities. Many researchers utilize the concept of trust to assess the trustworthiness of the received data. Nevertheless, the lack of a review to sum up the best available research on specific questions on trust management in vehicular ad hoc networks is sensible. This paper presents a systematic literature review to provide comprehensive and unbiased information about various current trust conceptions, proposals, problems, and solutions in VANETs to increase quality of data in transportation. For the purpose of the writing of this paper, a total of 111 articles related to the trust model in VANETs published between 2005 and 2014 were extracted from the most relevant scientific sources (IEEE Computer Society, ACM Digital Library, Springer Link, Science Direct, and Wiley Online Library). Finally, ten articles were eventually analyzed due to several reasons such as relevancy and comprehensiveness of discussion presented in the articles. Using the systematic method of review, this paper succeeds to reveal the main challenges and requirements for trust in VANETs and future research within this scope.

98 citations

Journal ArticleDOI
TL;DR: The results specify that the developed RBF–FFA model can be used as an efficient technique for accurate prediction of water stage of river.
Abstract: Water level prediction of rivers, especially in flood prone countries, can be helpful to reduce losses from flooding. A precise prediction method can issue a forewarning of the impending flood, to implement early evacuation measures, for residents near the river, when is required. To this end, we design a new method to predict water level of river. This approach relies on a novel method for prediction of water level named as RBF-FFA that is designed by utilizing firefly algorithm (FFA) to train the radial basis function (RBF) and (FFA) is used to interpolation RBF to predict the best solution. The predictions accuracy of the proposed RBF–FFA model is validated compared to those of support vector machine (SVM) and multilayer perceptron (MLP) models. In order to assess the models’ performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results show that the developed RBF–FFA model provides more precise predictions compared to different ANNs, namely support vector machine (SVM) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real time water stage measurements. The results specify that the developed RBF–FFA model can be used as an efficient technique for accurate prediction of water stage of river.

49 citations

Proceedings ArticleDOI
01 Jul 2013
TL;DR: The background of MCC is presented including the various definitions, infrastructures, and applications including the different approaches that have been adapted in studying MCC.
Abstract: Cloud Computing (CC) is fast becoming well known in the computing world as the latest technology. CC enables users to use resources as and when they are required. Mobile Cloud Computing (MCC) is an integration of the concept of cloud computing within a mobile environment, which removes barriers linked to the mobile devices' performance. Nevertheless, these new benefits are not problem-free entirely. Several common problems encountered by MCC are privacy, personal data management, identity authentication, and potential attacks. The security issues are a major hindrance in the mobile cloud computing's adaptability. This study begins by presenting the background of MCC including the various definitions, infrastructures, and applications. In addition, the current challenges and opportunities will be presented including the different approaches that have been adapted in studying MCC.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The health care system must treat illness, alleviate suffering and disability, and promote health, but the whole system needs to work to improve the health of populations.
Abstract: 1. Health care is a human right. 2. The care of the individual is at the center of health care, but the whole system needs to work to improve the health of populations. 3. The health care system must treat illness, alleviate suffering and disability, and promote health. 4. Cooperation with each other, those served, and those in other sectors is essential for all who work in health care. 5. All who provide health care must work to improve it. 6. Do no harm.

801 citations

Journal ArticleDOI
TL;DR: Extensive simulations and analysis show the effectiveness and efficiency of the proposed framework, in which the blockchain structure performs better in term of key transfer time than the structure with a central manager, while the dynamic scheme allows SMs to flexibly fit various traffic levels.
Abstract: As modern vehicle and communication technologies advanced apace, people begin to believe that the Intelligent Transportation System (ITS) would be achievable in one decade. ITS introduces information technology to the transportation infrastructures and aims to improve road safety and traffic efficiency. However, security is still a main concern in vehicular communication systems (VCSs). This can be addressed through secured group broadcast. Therefore, secure key management schemes are considered as a critical technique for network security. In this paper, we propose a framework for providing secure key management within the heterogeneous network. The security managers (SMs) play a key role in the framework by capturing the vehicle departure information, encapsulating block to transport keys and then executing rekeying to vehicles within the same security domain. The first part of this framework is a novel network topology based on a decentralized blockchain structure. The blockchain concept is proposed to simplify the distributed key management in heterogeneous VCS domains. The second part of the framework uses the dynamic transaction collection period to further reduce the key transfer time during vehicles handover. Extensive simulations and analysis show the effectiveness and efficiency of the proposed framework, in which the blockchain structure performs better in term of key transfer time than the structure with a central manager, while the dynamic scheme allows SMs to flexibly fit various traffic levels.

466 citations

Journal ArticleDOI
TL;DR: This survey article starts with the necessary background of VANETs, followed by a brief treatment of main security services, and focuses on an in-depth review of anonymous authentication schemes implemented by five pseudonymity mechanisms.
Abstract: Vehicular ad hoc networks (VANETs) are becoming the most promising research topic in intelligent transportation systems, because they provide information to deliver comfort and safety to both drivers and passengers. However, unique characteristics of VANETs make security, privacy, and trust management challenging issues in VANETs’ design. This survey article starts with the necessary background of VANETs, followed by a brief treatment of main security services, which have been well studied in other fields. We then focus on an in-depth review of anonymous authentication schemes implemented by five pseudonymity mechanisms. Because of the predictable dynamics of vehicles, anonymity is necessary but not sufficient to thwart tracking an attack that aims at the drivers’ location profiles. Thus, several location privacy protection mechanisms based on pseudonymity are elaborated to further protect the vehicles’ privacy and guarantee the quality of location-based services simultaneously. We also give a comprehensive analysis on various trust management models in VANETs. Finally, considering that current and near-future applications in VANETs are evaluated by simulation, we give a much-needed update on the latest mobility and network simulators as well as the integrated simulation platforms. In sum, this paper is carefully positioned to avoid overlap with existing surveys by filling the gaps and reporting the latest advances in VANETs while keeping it self-explained.

413 citations

Journal ArticleDOI
TL;DR: This paper systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks, and sheds light on the gaps in these security solutions that call for ML and DL approaches.
Abstract: The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, can be leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. Finally, we discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. We also discuss several future research directions for ML- and DL-based IoT security.

407 citations

Journal ArticleDOI
TL;DR: A comprehensive detail is presented on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others.
Abstract: Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.

304 citations