scispace - formally typeset
Search or ask a question
Author

Wang-Chien Lee

Bio: Wang-Chien Lee is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Wireless sensor network & Nearest neighbor search. The author has an hindex of 60, co-authored 366 publications receiving 14123 citations. Previous affiliations of Wang-Chien Lee include Ohio State University & Verizon Communications.


Papers
More filters
Proceedings ArticleDOI
03 Sep 2004
TL;DR: This work proposes a dual prediction-based reporting mechanism (called DPR), in which both sensor nodes and the base station predict the future movements of the mobile objects, and shows that DPR is able to achieve considerable energy savings under various conditions and outperforms existing reporting mechanisms.
Abstract: As one of the wireless sensor network killer applications, object tracking sensor networks (OTSNs) disclose many opportunities for energy-aware system design and implementations. We investigate prediction-based approaches for performing energy efficient reporting in OTSNs. We propose a dual prediction-based reporting mechanism (called DPR), in which both sensor nodes and the base station predict the future movements of the mobile objects. Transmissions of sensor readings are avoided as long as the predictions are consistent with the real object movements. DPR achieves energy efficiency by intelligently trading off multihop/long-range transmissions of sensor readings between sensor nodes and the base station with one-hop/short-range communications of object movement history among neighbor sensor nodes. We explore the impact of several system parameters and moving behavior of tracked objects on DPR performance, and also study two major components of DPR: prediction models and location models through simulations. Our experimental results show that DPR is able to achieve considerable energy savings under various conditions and outperforms existing reporting mechanisms.

147 citations

Proceedings ArticleDOI
05 Oct 2004
TL;DR: This work presents the design of an overlay network, namely semantic small world (SSW), that facilitates efficient semantic based search in P2P systems and achieves a very competitive trade-off between the search latencies/traffic and maintenance overheads.
Abstract: For a peer-to-peer (P2P) system holding massive amount of data, efficient semantic based search for resources (such as data or services) is a key determinant to its scalability. This work presents the design of an overlay network, namely semantic small world (SSW), that facilitates efficient semantic based search in P2P systems. SSW is based on three innovative ideas: 1) small world network; 2) semantic clustering; 3) dimension reduction. Peers in SSW are clustered according to the semantics of their local data and self-organized as a small world overlay network. To address the maintenance issue of high dimensional overlay networks, a dynamic dimension reduction method, called adaptive space linearization, is used to construct a one-dimensional SSW that supports operations in the high dimensional semantic space. SSW achieves a very competitive trade-off between the search latencies/traffic and maintenance overheads. Through extensive simulations, we show that SSW is much more scalable to very large network sizes and very large numbers of data objects compared to pSearch, the state-of-the-art semantic-based search technique for P2P systems. In addition, SSW is adaptive to distribution of data and locality of interest; is very resilient to failures; and has good load balancing property.

145 citations

Journal ArticleDOI
01 Jan 2006
TL;DR: This paper introduces a new index method, called the grid-partition index, to support NN search in both on-demand access and periodic broadcast modes of mobile computing and develops an incremental construction algorithm to address the issue of object update.
Abstract: Traditional nearest-neighbor (NN) search is based on two basic indexing approaches: object-based indexing and solution-based indexing. The former is constructed based on the locations of data objects: using some distance heuristics on object locations. The latter is built on a precomputed solution space. Thus, NN queries can be reduced to and processed as simple point queries in this solution space. Both approaches exhibit some disadvantages, especially when employed for wireless data broadcast in mobile computing environments.In this paper, we introduce a new index method, called the grid-partition index, to support NN search in both on-demand access and periodic broadcast modes of mobile computing. The grid-partition index is constructed based on the Voronoi diagram, i.e., the solution space of NN queries. However, it has two distinctive characteristics. First, it divides the solution space into grid cells such that a query point can be efficiently mapped into a grid cell around which the nearest object is located. This significantly reduces the search space. Second, the grid-partition index stores the objects that are potential NNs of any query falling within the cell. The storage of objects, instead of the Voronoi cells, makes the grid-partition index a hybrid of the solution-based and object-based approaches. As a result, it achieves a much more compact representation than the pure solution-based approach and avoids backtracked traversals required in the typical object-based approach, thus realizing the advantages of both approaches.We develop an incremental construction algorithm to address the issue of object update. In addition, we present a cost model to approximate the search cost of different grid partitioning schemes. The performances of the grid-partition index and existing indexes are evaluated using both synthetic and real data. The results show that, overall, the grid-partition index significantly outperforms object-based indexes and solution-based indexes. Furthermore, we extend the grid-partition index to support continuous-nearest-neighbor search. Both algorithms and experimental results are presented.

142 citations

Journal ArticleDOI
TL;DR: A new framework to tackle the influence maximization problem with an emphasis on the time efficiency issue, and shows that the proposed CIM algorithm significantly outperforms the state-of-the-art algorithms in terms of efficiency and scalability, with almost no compromise of effectiveness.
Abstract: Given a social graph, the problem of influence maximization is to determine a set of nodes that maximizes the spread of influences. While some recent research has studied the problem of influence maximization, these works are generally too time consuming for practical use in a large-scale social network. In this article, we develop a new framework, community-based influence maximization (CIM), to tackle the influence maximization problem with an emphasis on the time efficiency issue. Our proposed framework, CIM, comprises three phases: (i) community detection, (ii) candidate generation, and (iii) seed selection. Specifically, phase (i) discovers the community structure of the network; phase (ii) uses the information of communities to narrow down the possible seed candidates; and phase (iii) finalizes the seed nodes from the candidate set. By exploiting the properties of the community structures, we are able to avoid overlapped information and thus efficiently select the number of seeds to maximize information spreads. The experimental results on both synthetic and real datasets show that the proposed CIM algorithm significantly outperforms the state-of-the-art algorithms in terms of efficiency and scalability, with almost no compromise of effectiveness.

136 citations

Proceedings ArticleDOI
19 May 2003
TL;DR: Performance evaluation, based on mathematical analysis, shows that localized prediction can significantly reduce the power consumption in object tracking sensor networks.
Abstract: Energy is one of the most critical constraints for sensor network applications. In this paper, we exploit the localized prediction paradigm for power-efficient object tracking sensor network. Localized prediction consists of a localized network architecture and a prediction mechanism called dual prediction, which achieve power savings by allowing most of the sensor nodes stay in sleep mode and by reducing the amount of long-range transmissions. Performance evaluation, based on mathematical analysis, shows that localized prediction can significantly reduce the power consumption in object tracking sensor networks.

134 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI

6,278 citations

Proceedings ArticleDOI
21 Aug 2011
TL;DR: A model of human mobility that combines periodic short range movements with travel due to the social network structure is developed and it is shown that this model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance.
Abstract: Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basic laws govern human motion and dynamics. We find that humans experience a combination of periodic movement that is geographically limited and seemingly random jumps correlated with their social networks. Short-ranged travel is periodic both spatially and temporally and not effected by the social network structure, while long-distance travel is more influenced by social network ties. We show that social relationships can explain about 10% to 30% of all human movement, while periodic behavior explains 50% to 70%. Based on our findings, we develop a model of human mobility that combines periodic short range movements with travel due to the social network structure. We show that our model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance than present models of human mobility.

2,922 citations

01 Nov 2008

2,686 citations

Journal ArticleDOI
TL;DR: This review presents the emergent field of temporal networks, and discusses methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems.
Abstract: A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems In many cases, however, the edges are not continuously active As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts In some cases, edges are active for non-negligible periods of time: eg, the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks

2,452 citations