scispace - formally typeset
Search or ask a question
Author

Wang-Chien Lee

Bio: Wang-Chien Lee is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Wireless sensor network & Nearest neighbor search. The author has an hindex of 60, co-authored 366 publications receiving 14123 citations. Previous affiliations of Wang-Chien Lee include Ohio State University & Verizon Communications.


Papers
More filters
Book ChapterDOI
01 Feb 2001
TL;DR: These indexing methods show that battery power consumption in mobile clients can be significantly reduced with some access time overhead and hybrid index is the best choice for improving power efficiency under both scenarios of single and multiple attributes based queries.
Abstract: In this paper, we introduce our research on power conserving and access efficient indexing techniques for wireless computing and revisit some of the pioneering work in this area. These indexing methods show that battery power consumption in mobile clients can be significantly reduced with some access time overhead. Among them, hybrid index is the best choice for improving power efficiency under both scenarios of single and multiple attributes based queries. Moreover, we introduce two access efficient indexing methods, cache schedule and integrated signature, for a wireless data dissemination system that incorporates both of broadcast and on-demand services.

6 citations

01 Jan 1998
TL;DR: This study incorporates two important techniques clustering and scheduling for improving data broadcastiency and explores the scenarios of single and multiple attribute query processing.

6 citations

Journal ArticleDOI
01 Apr 2020
TL;DR: Wang et al. as mentioned in this paper formulated the Social-aware VR Group-Item Configuration (SVGIC) problem to configure a set of displayed items for flexibly partitioned subgroups of users in VR group shopping.
Abstract: Shopping in VR malls has been regarded as a paradigm shift for E-commerce, but most of the conventional VR shopping platforms are designed for a single user. In this paper, we envisage a scenario of VR group shopping, which brings major advantages over conventional group shopping in brick-and-mortar stores and Web shopping: 1) configure flexible display of items and partitioning of subgroups to address individual interests in the group, and 2) support social interactions in the subgroups to boost sales. Accordingly, we formulate the Social-aware VR Group-Item Configuration (SVGIC) problem to configure a set of displayed items for flexibly partitioned subgroups of users in VR group shopping. We prove SVGIC is APX-hard and also NP-hard to approximate within [EQUATION]. We design a 4-approximation algorithm based on the idea of Co-display Subgroup Formation (CSF) to configure proper items for display to different subgroups of friends. Experimental results on real VR datasets and a user study with hTC VIVE manifest that our algorithms outperform baseline approaches by at least 30.1% of solution quality.

6 citations

Journal ArticleDOI
TL;DR: Simulation results show that PSGR exhibits superior performance in terms of energy consumption, routing latency, and delivery rate, and soundly outperforms all of the compared protocols.
Abstract: Volunteer forwarding, as an emerging routing idea for large scale, location-aware wireless sensor networks, has recently received significant attention. However, several critical research issues raised by volunteer forwarding, including communication collisions, communication voids, and time-critical routing, have not been well addressed by the existing work. In this paper, we propose a priority-based stateless geo-routing (PSGR) protocol that addresses these issues. Based on PSGR, sensor nodes are able to locally determine their priority to serve as the next relay node using dynamically estimated network density. This effectively suppresses potential communication collisions without prolonging routing delays. PSGR also overcomes the communication void problem using two alternative stateless schemes, rebroadcast and bypass. Meanwhile, PSGR supports routing of time-critical packets with different deadline requirements at no extra communication cost. Additionally, we analyze the energy consumption and the delivery rate of PSGR as functions of the transmission range. Finally, an extensive performance evaluation has been conducted to compare PSGR with competing protocols, including GeRaf, IGF, GPSR, flooding, and MSPEED. Simulation results show that PSGR exhibits superior performance in terms of energy consumption, routing latency, and delivery rate, and soundly outperforms all of the compared protocols.

6 citations

Proceedings ArticleDOI
04 Sep 2012
TL;DR: Aiming at achieving high estimation accuracy and alleviating excessive computation, a time-series disaggregation algorithm is developed which incorporates two novel techniques, namely, DE-pruning and monotonic enumeration, for search space pruning.
Abstract: The growing concerns on urgent environmental and economical issues, such as global warming and rising energy cost, have motivated research studies on various green computing technologies. For example, Non-Intrusive Appliance Load Monitor (NIALM) techniques, aiming at energy monitoring, load forecasting and improved control of residential electrical appliances, have been developed by monitoring one electrical circuit that contains a number of electrical appliances without using separate sub-meters. By employing pattern recognition algorithms, the NIALM techniques estimate the consumption of individual appliances. While the basic ideas behind the NIALM techniques are valid, existing proposals suffer from the issue of poor estimation accuracy. In this paper, we model the process of load separation in NIALM as a time series disaggregation problem. Aiming at achieving high estimation ac-curacy and alleviating excessive computation, we develop a time-series disaggregation algorithm which incorporates two novel techniques, namely, DE-pruning and monotonic enumeration, for search space pruning. A comprehensive set of experiments are conducted to validate our proposals and to evaluate the effectiveness and the efficiency of the proposed methods. The result shows that our proposal is effective and efficient.

6 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI

6,278 citations

Proceedings ArticleDOI
21 Aug 2011
TL;DR: A model of human mobility that combines periodic short range movements with travel due to the social network structure is developed and it is shown that this model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance.
Abstract: Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basic laws govern human motion and dynamics. We find that humans experience a combination of periodic movement that is geographically limited and seemingly random jumps correlated with their social networks. Short-ranged travel is periodic both spatially and temporally and not effected by the social network structure, while long-distance travel is more influenced by social network ties. We show that social relationships can explain about 10% to 30% of all human movement, while periodic behavior explains 50% to 70%. Based on our findings, we develop a model of human mobility that combines periodic short range movements with travel due to the social network structure. We show that our model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance than present models of human mobility.

2,922 citations

01 Nov 2008

2,686 citations

Journal ArticleDOI
TL;DR: This review presents the emergent field of temporal networks, and discusses methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems.
Abstract: A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems In many cases, however, the edges are not continuously active As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts In some cases, edges are active for non-negligible periods of time: eg, the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks

2,452 citations