scispace - formally typeset
Search or ask a question
Author

Wang Jinan

Bio: Wang Jinan is an academic researcher from Northwest A&F University. The author has contributed to research in topics: Systems pharmacology & Drug discovery. The author has an hindex of 9, co-authored 18 publications receiving 1693 citations. Previous affiliations of Wang Jinan include Beijing University of Chinese Medicine.

Papers
More filters
Journal ArticleDOI
TL;DR: The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature ofTCM theory and developing new herb-oriented drugs.
Abstract: Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php .

2,451 citations

Journal ArticleDOI
TL;DR: A novel systems pharmacology model that integrates oral bioavailability screening, drug-likeness evaluation, blood-brain barrier permeation, target identification and network analysis has been established to investigate the herbal medicines.

224 citations

Journal ArticleDOI
04 Sep 2012-PLOS ONE
TL;DR: This study performed a high-throughput in silico screen and obtained a group of compounds from CDF which possess desirable pharmacodynamical and pharmacological characteristics, and proposed a strategy to develop novel TCM candidates at a network pharmacology level.
Abstract: Compound Danshen Formula (CDF) is a widely used Traditional Chinese Medicine (TCM) which has been extensively applied in clinical treatment of cardiovascular diseases (CVDs). However, the underlying mechanism of clinical administrating CDF on CVDs is not clear. In this study, the pharmacological effect of CDF on CVDs was analyzed at a systemic point of view. A systems-pharmacological model based on chemical, chemogenomics and pharmacological data is developed via network reconstruction approach. By using this model, we performed a high-throughput in silico screen and obtained a group of compounds from CDF which possess desirable pharmacodynamical and pharmacological characteristics. These compounds and the corresponding protein targets are further used to search against biological databases, such as the compound-target associations, compound-pathway connections and disease-target interactions for reconstructing the biologically meaningful networks for a TCM formula. This study not only made a contribution to a better understanding of the mechanisms of CDF, but also proposed a strategy to develop novel TCM candidates at a network pharmacology level.

159 citations

Journal ArticleDOI
TL;DR: A systems pharmacology framework to predict drug combinations (PreDCs) on a computational model, termed probability ensemble approach (PEA), for analysis of both the efficacy and adverse effects of drug combinations.
Abstract: Motivation: Drug combinations are a promising strategy for combat- ing complex diseases by improving the efficacy and reducing corre- sponding side effects. Currently, a widely studied problem in phar- macology is to predict effective drug combinations, either through empirically screening in clinic or pure experimental trials. However, the large-scale prediction of drug combination by a systems method is rarely considered. Results: We report a systems pharmacology framework to predict drug combinations on a computational model, termed PEA (Proba- bility Ensemble Approach), for analysis of both the efficacy and ad- verse effects of drug combinations. Firstly, a Bayesian network inte- grating with a similarity algorithm is developed to model the combi- nations from drug molecular and pharmacological phenotypes, and the predictions are then assessed with both clinical efficacy and adverse effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different therapeutic classes with high specificity and sensitivity (AUC = 0.90), which was further validated by independent data or new experimental assays. PEA also evalu- ates the adverse effects (AUC = 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally, the PreDC (Predict Drug Combination) database includes 1571 known and 3269 predicted optimal combinations as well as their potential side effects and therapeutic indications. Availability and implementation: The PreDC database is available

121 citations

Journal ArticleDOI
TL;DR: An integrated systems pharmacology platform combining pharmacokinetics, chemogenomics, pharmacology and systems biology data through computational methods is reported, which results in a superior output of information for systematic drug design strategies for complex diseases.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature ofTCM theory and developing new herb-oriented drugs.
Abstract: Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php .

2,451 citations

Journal ArticleDOI
Shao Li1, Bo Zhang1
TL;DR: The studies suggest that the TCM network pharmacology approach provides a new research paradigm for translating TCM from an experience- based medicine to an evidence-based medicine system, which will accelerate TCM drug discovery, and also improve current drug discovery strategies.

873 citations

Journal ArticleDOI
TL;DR: Network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements.
Abstract: The research field of systems biology has greatly advanced, and as a result, the concept of network pharmacology has been developed. This advancement, in turn, has shifted the paradigm from a “one-target, one-drug” mode to a “network-target, multiple-component-therapeutics” mode. Network pharmacology is more effective for establishing a “compound-protein/gene-disease” network and revealing the regulation principles of small molecules in a high-throughput manner. This approach makes it very powerful for the analysis of drug combinations, especially Traditional Chinese Medicine (TCM) preparations. In this work, we first summarized the databases and tools currently used for TCM research. Second, we focused on several representative applications of network pharmacology for TCM research, including studies on TCM compatibility, TCM target prediction, and TCM network toxicology research. Third, we compared the general statistics of several current TCM databases and evaluated and compared the search results of these databases based on 10 famous herbs. In summary, network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements. Additionally, given that several diseases could be treated by TCMs, with the mediation of gut microbiota, future studies should focus on both microbiome and TCMs to better understand and treat microbiome-related diseases.

603 citations

Journal ArticleDOI
TL;DR: BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCm’s molecular mechanism.
Abstract: Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

507 citations

Journal ArticleDOI
TL;DR: The mechanism of efficiency of Radix Curcumae formula for the prevention of CCVD is explained, and the potential targets of the Chinese medicines are predicted, which facilitates to elucidate the compatible mechanism of the complex prescription, i.e., "jun-chen-zuo-shi".

422 citations