scispace - formally typeset
Search or ask a question
Author

Wang Ling Goh

Bio: Wang Ling Goh is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: CMOS & Amplifier. The author has an hindex of 25, co-authored 150 publications receiving 2471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel error-tolerant adder (ETA) is proposed that is able to ease the strict restriction on accuracy, and at the same time achieve tremendous improvements in both the power consumption and speed performance.
Abstract: In modern VLSI technology, the occurrence of all kinds of errors has become inevitable. By adopting an emerging concept in VLSI design and test, error tolerance (ET), a novel error-tolerant adder (ETA) is proposed. The ETA is able to ease the strict restriction on accuracy, and at the same time achieve tremendous improvements in both the power consumption and speed performance. When compared to its conventional counterparts, the proposed ETA is able to attain more than 65% improvement in the Power-Delay Product (PDP). One important potential application of the proposed ETA is in digital signal processing systems that can tolerate certain amount of errors.

286 citations

Proceedings ArticleDOI
01 Nov 2010
TL;DR: In this paper, the tradeoff between power consumption and speed performance has become a major design consideration when devices approach the sub-100 nm regime, especially when dealing with large data set, whereby the system is degraded in terms of power and speed.
Abstract: The tradeoff between power consumption and speed performance has become a major design consideration when devices approach the sub-100 nm regime. It is especially critical when dealing with large data set, whereby the system is degraded in terms of power and speed. If the application can accept some errors, i.e. the application is Error — tolerant (ET), a large reduction in power and an increased in speed can be simultaneously achieved. In this paper, we shall present a novel low-power and high-speed Error-Tolerant Adder Type IV design called ETAIV. The proposed ETAIV is an enhancement of our earlier design, ETAII [1] in terms of speed and accuracy.

248 citations

01 Dec 2009
TL;DR: In this article, a novel error-tolerant adversary, named the Error-Tolerant Adder (ETAII), has been proposed to overcome all possible errors in modern VLSI technology.
Abstract: The occurrence of errors are inevitable in modern VLSI technology and to overcome all possible errors is an expensive task. It not only consumes a lot of power but degrades the speed performance. By adopting an emerging concept in VLSI design and test—Error- Tolerance (ET), we managed to develop a novel Error-Tolerant Adder which we named the Type II (ETAII). The circuit to some extent is able to ease the strict restriction on accuracy to achieve tremendous improvements in both the power consumption and speed performance. When compared to its conventional counterparts, the proposed ETAII is able to achieve more than 60% improvement in the Power-Delay Product (PDP). The proposed ETAII is an enhancement of our earlier design, the ETAI, which has problem adding small number inputs.

173 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: By introducing accuracy as a design parameter, the bottleneck of conventional digital IC design techniques can be breakthrough to improve on the performances of power consumption and speed.
Abstract: In this paper, a new design concept that engaged accuracy as a design parameter is proposed. By introducing accuracy as a design parameter, the bottleneck of conventional digital IC design techniques can be breakthrough to improve on the performances of power consumption and speed. The aim is to fulfill the need for high performance basic sequential elements with low-power dissipation which is steadily growing.

142 citations

Journal ArticleDOI
TL;DR: A dual sample-and-hold architecture is proposed, which extends the sampling time of the ADC and reduces the average power per channel by more than 50% compared to the conventional multiplexing neural recording system.
Abstract: This paper presents a fully implantable 100-channel neural interface IC for neural activity monitoring. It contains 100-channel analog recording front-ends, 10 multiplexing successive approximation register ADCs, digital control modules and power management circuits. A dual sample-and-hold architecture is proposed, which extends the sampling time of the ADC and reduces the average power per channel by more than 50% compared to the conventional multiplexing neural recording system. A neural amplifier (NA) with current-reuse technique and weak inversion operation is demonstrated, consuming 800 nA under 1-V supply while achieving an input-referred noise of 4.0 μVrms in a 8-kHz bandwidth and a NEF of 1.9 for the whole analog recording chain. The measured frequency response of the analog front-end has a high-pass cutoff frequency from sub-1 Hz to 248 Hz and a low-pass cutoff frequency from 432 Hz to 5.1 kHz, which can be configured to record neural spikes and local field potentials simultaneously or separately. The whole system was fabricated in a 0.18-μm standard CMOS process and operates under 1 V for analog blocks and ADC, and 1.8 V for digital modules. The number of active recording channels is programmable and the digital output data rate changes accordingly, leading to high system power efficiency. The overall 100-channel interface IC consumes 1.16-mW total power, making it the optimum solution for multi-channel neural recording systems.

121 citations


Cited by
More filters
Proceedings ArticleDOI
27 May 2013
TL;DR: This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.
Abstract: Approximate computing has recently emerged as a promising approach to energy-efficient design of digital systems. Approximate computing relies on the ability of many systems and applications to tolerate some loss of quality or optimality in the computed result. By relaxing the need for fully precise or completely deterministic operations, approximate computing techniques allow substantially improved energy efficiency. This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.

921 citations

Journal ArticleDOI
TL;DR: This paper proposes logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy, and demonstrates the utility of these approximate adders in two digital signal processing architectures with specific quality constraints.
Abstract: Low power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, human beings can gather useful information from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous research in this context exploits error resiliency primarily through voltage overscaling, utilizing algorithmic and architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate this concept by proposing various imprecise or approximate full adder cells with reduced complexity at the transistor level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling. We design architectures for video and image compression algorithms using the proposed approximate arithmetic units and evaluate them to demonstrate the efficacy of our approach. We also derive simple mathematical models for error and power consumption of these approximate adders. Furthermore, we demonstrate the utility of these approximate adders in two digital signal processing architectures (discrete cosine transform and finite impulse response filter) with specific quality constraints. Simulation results indicate up to 69% power savings using the proposed approximate adders, when compared to existing implementations using accurate adders.

637 citations

Journal ArticleDOI
TL;DR: New metrics are proposed for evaluating the reliability as well as the power efficiency of approximate and probabilistic adders and it is shown that the MED is an effective metric for measuring the implementation accuracy of a multiple-bit adder and that the NED is a nearly invariant metric independent of the size of an adder.
Abstract: Addition is a fundamental function in arithmetic operation; several adder designs have been proposed for implementations in inexact computing. These adders show different operational profiles; some of them are approximate in nature while others rely on probabilistic features of nanoscale circuits. However, there has been a lack of appropriate metrics to evaluate the efficacy of various inexact designs. In this paper, new metrics are proposed for evaluating the reliability as well as the power efficiency of approximate and probabilistic adders. Reliability is analyzed using the so-called sequential probability transition matrices (SPTMs). Error distance (ED) is initially defined as the arithmetic distance between an erroneous output and the correct output for a given input. The mean error distance (MED) and normalized error distance (NED) are then proposed as unified figures that consider the averaging effect of multiple inputs and the normalization of multiple-bit adders. It is shown that the MED is an effective metric for measuring the implementation accuracy of a multiple-bit adder and that the NED is a nearly invariant metric independent of the size of an adder. The MED is, therefore, useful in assessing the effectiveness of an approximate or probabilistic adder implementation, while the NED is useful in characterizing the reliability of a specific design. Since inexact adders are often used for saving power, the product of power and NED is further utilized for evaluating the tradeoffs between power consumption and precision. Although illustrated using adders, the proposed metrics are potentially useful in assessing other arithmetic circuit designs for applications of inexact computing.

453 citations

Proceedings Article
01 Jan 2010
TL;DR: In this article, a low power boost converter for thermoelectric energy harvesting that demonstrates an efficiency that is 15% higher than the state-of-the-art for voltage conversion ratios above 20.
Abstract: This paper presents a low power boost converter for thermoelectric energy harvesting that demonstrates an efficiency that is 15% higher than the state-of-the-art for voltage conversion ratios above 20. This is achieved by utilizing a technique allowing synchronous rectification in the discontinuous conduction mode. A low-power method for input voltage monitoring is presented. The low input voltage requirements allow operation from a thermoelectric generator powered by body heat. The converter, fabricated in a 0.13 μm CMOS process, operates from input voltages ranging from 20 mV to 250 mV while supplying a regulated 1 V output. The converter consumes 1.6 (1.1) μW of quiescent power, delivers up to 25 (175) μW of output power, and is 46 (75)% efficient for a 20 mV and 100 mV input, respectively.

412 citations

Journal ArticleDOI
TL;DR: An obliquity factor based on area ratio between the object and its horizontal bounding box, guiding the selection of horizontal or oriented detection for each object is introduced, and five extra target variables are added to the regression head of faster R-CNN, which requires ignorable extra computation time.
Abstract: Object detection has recently experienced substantial progress. Yet, the widely adopted horizontal bounding box representation is not appropriate for ubiquitous oriented objects such as objects in aerial images and scene texts. In this paper, we propose a simple yet effective framework to detect multi-oriented objects. Instead of directly regressing the four vertices, we glide the vertex of the horizontal bounding box on each corresponding side to accurately describe a multi-oriented object. Specifically, We regress four length ratios characterizing the relative gliding offset on each corresponding side. This may facilitate the offset learning and avoid the confusion issue of sequential label points for oriented objects. To further remedy the confusion issue for nearly horizontal objects, we also introduce an obliquity factor based on area ratio between the object and its horizontal bounding box, guiding the selection of horizontal or oriented detection for each object. We add these five extra target variables to the regression head of faster R-CNN, which requires ignorable extra computation time. Extensive experimental results demonstrate that without bells and whistles, the proposed method achieves superior performances on multiple multi-oriented object detection benchmarks including object detection in aerial images, scene text detection, pedestrian detection in fisheye images.

395 citations