scispace - formally typeset
Search or ask a question
Author

Wang-Sang Lee

Other affiliations: KAIST
Bio: Wang-Sang Lee is an academic researcher from Gyeongsang National University. The author has contributed to research in topics: Antenna (radio) & Dipole antenna. The author has an hindex of 15, co-authored 101 publications receiving 1153 citations. Previous affiliations of Wang-Sang Lee include KAIST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a planar monopole antenna with dual band-notched characteristics, which is suitable for creating ultra-wideband antenna with narrow frequency notches or for creating multiband antennas.
Abstract: Wideband planar monopole antennas with dual band-notched characteristics are presented. The proposed antenna consists of a wideband planar monopole antenna and the multiple cup-, cap-, and inverted L-shaped slots, producing band-notched characteristics. In order to generate dual band-notched characteristic, we propose nine types of planar monopole antennas, which have two or three cap (cup or inverted L)-shaped slots in the radiator. This technique is suitable for creating ultra-wideband antenna with narrow frequency notches or for creating multiband antennas

308 citations

Journal ArticleDOI
TL;DR: A new design approach that uses antiparallel resonant loops for CET systems is presented, which achieves frequency variation that is one-sixth that of conventional unidirectional loops, thus improving the power efficiency to a maximum of 87%.
Abstract: Due to the convenience of using electronic devices, contactless energy transfer (CET) systems have garnered interest in various fields of industry. In this paper, a new design approach that uses antiparallel resonant loops for CET systems is presented. Forward and reverse loops forming an antiparallel resonant structure stabilize the transfer efficiency and therefore prevent it from dramatic distance-related changes, a phenomenon that can occur in CET systems with nonradiative methods (or resonant methods). This paper proposes frequency-insensitive antiparallel resonant loops and the optimal design of these loops for uniform transfer efficiency according to the distance. The proposed technique achieves frequency variation that is one-sixth that of conventional unidirectional loops, thus improving the power efficiency to a maximum of 87%. The improved performance of data transmissions for near-field communication is also verified.

133 citations

Journal ArticleDOI
Wang-Sang Lee1, Won-Gyu Lim1, Jong-Won Yu1
TL;DR: In this paper, a multiple band-notched planar monopole antenna for multiband wireless systems is presented, which is suitable for creating ultra wideband (UWB) antenna with narrow frequency notches or for creating multiband antennas.
Abstract: A multiple band-notched planar monopole antenna for multiband wireless systems is presented. The proposed antenna consists of a wideband planar monopole antenna and the multiple U-shape slots, producing band-notched characteristics. In order to generate two band-notched characteristics, we propose that three U-shape slots are required. This technique is suitable for creating ultra-wideband (UWB) antenna with narrow frequency notches or for creating multiband antennas.

95 citations

Journal ArticleDOI
TL;DR: In this article, a beamforming matrix and a dc power management network (PMN) are introduced to the hybrid power combining array, and the normalized dc output power of the proposed hybrid combining array is compared to the conventional power combining methods with regard to the incident wave angle.
Abstract: This paper discusses a new design approach that uses hybrid power combining rectenna array in radio frequency (RF) energy transfer systems to receive more energy in a wide incident angle range. A beam-forming matrix and a dc power management network (PMN) are introduced to the hybrid power combining. The normalized dc output power of the proposed hybrid power combining array is compared to the conventional power combining methods with regard to the incident wave angle, and the average received dc power is also calculated and compared. To experimentally verify the proposed hybrid combining array performance, four suspended patch antennas are attached to RF energy receiving architecture. A $4 \times 4$ Butler matrix and quadrature hybrids are used for the beam-forming matrix in a hybrid power combining rectenna array. A reconfigurable voltage doubler rectifier with a dc PMN is used to convert RF energy to dc energy and delivers proper voltage to the load. The measured results of each component are presented. Moreover, an experimental verification using fabricated components for RF energy transfer is presented and the measured received dc output power of conventional and proposed structures is presented and compared.

85 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous power-controlled MW conveyor-belt drier using multiple 2.45 GHz MW sources improves heating uniformity by controlling the input power of MW sources sequentially.
Abstract: Due to the nonuniform energy distribution in a microwave (MW) cavity, MW-based heating applications remain a substantial barrier. A continuous power-controlled MW conveyor-belt drier using multiple 2.45-GHz MW sources improves heating uniformity. By controlling the input power of MW sources sequentially, the electric field and temperature variations, hot and cold spots in the MW cavity, have been significantly reduced. Experimental results show that the MW heating using the proposed continuous power-controlled method can achieve an improved heating uniformity of approximately 34% compared with a simultaneous multiple input method (conventional mode).

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension, and summarizes the operating principles of a range of wireless power research into the maximum power transfer and the maximum energy efficiency principles.
Abstract: Starting from Tesla's principles of wireless power transfer a century ago, this critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension. It summarizes the operating principles of a range of wireless power research into 1) the maximum power transfer and 2) the maximum energy efficiency principles. The differences and the implications of these two approaches are explained in terms of their energy efficiency and transmission distance capabilities. The differences between the system energy efficiency and the transmission efficiency are also highlighted. The review covers the two-coil systems, the four-coil systems, the systems with relay resonators and the wireless domino-resonator systems. Related issues including human exposure issues and reduction of winding resistance are also addressed. The review suggests that the use of the maximum energy efficiency principle in the two-coil systems is suitable for short-range rather than mid-range applications, the use of the maximum power transfer principle in the four-coil systems is good for maximizing the transmission distance, but is under a restricted system energy efficiency (<;50%); the use of the maximum energy efficiency principle in relay or domino systems may offer a good compromise for good system energy efficiency and transmission distance on the condition that relay resonators can be placed between the power source and the load.

1,209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications, with regard to network applications and discuss open issues and challenges in implementing wireless charging technologies.
Abstract: Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this paper, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.

718 citations

Journal ArticleDOI
TL;DR: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process.
Abstract: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processing conditions and for a wider range of material properties compared with the conventional thermally-driven ALD method. Due to the continuous miniaturization in the microelectronics industry and the increasing relevance of ultra-thin films in many other applications, the deposition method has rapidly gained popularity in recent years, as is apparent from the increased number of articles published on the topic and plasma-assisted ALD reactors installed. To address the main differences between plasma-assisted ALD and thermal ALD, some basic aspects related to processing plasmas are presented in this review article. The plasma species and their role in the surface chemistry are addressed and different equipment configurations, including radical-enhanced ALD, direct plasma ALD, and remote plasma ALD, are described. The benefits and challenges provided by the use of a plasma step are presented and it is shown that the use of a plasma leads to a wider choice in material properties, substrate temperature, choice of precursors, and processing conditions, but that the processing can also be compromised by reduced film conformality and plasma damage. Finally, several reported emerging applications of plasma-assisted ALD are reviewed. It is expected that the merits offered by plasma-assisted ALD will further increase the interest of equipment manufacturers for developing industrial-scale deposition configurations such that the method will find its use in several manufacturing applications.

690 citations

Journal ArticleDOI
TL;DR: In this paper, a planar ultrawideband (UWB) antenna with 3.4/5.5 GHz dual band-notched characteristics is proposed, which consists of a beveled rectangular metal patch and a 50 Omega coplanar waveguide (CPW) transmission line.
Abstract: We propose a compact planar ultrawideband (UWB) antenna with 3.4/5.5 GHz dual band-notched characteristics. The antenna consists of a beveled rectangular metal patch and a 50 Omega coplanar waveguide (CPW) transmission line. By etching two nested C-shaped slots in the patch, band-rejected filtering properties in the WiMAX/WLAN bands are achieved. The proposed antenna is successfully simulated, designed, and measured showing broadband matched impedance, stable radiation patterns and constant gain. An equivalent circuit model of the proposed antenna is presented to discuss the mechanism of the dual band-notched UWB antenna. A UWB antenna and a single band-notched one are also provided for references.

448 citations

Journal ArticleDOI
TL;DR: In this paper, a critical comparison of IPT and CPT for small gap applications is provided, wherein the theoretical and empirical limitations of each approach are established, and guidelines for selecting IPT or CPT in small gap systems are presented.
Abstract: Inductive power transfer (IPT) and capacitive power transfer (CPT) are the two most pervasive methods of wireless power transfer (WPT). IPT is the most common and is applicable to many power levels and gap distances. Conversely, CPT is only applicable for power transfer applications with inherently small gap distances due to constraints on the developed voltage. Despite limitations on gap distance, CPT has been shown to be viable in kilowatt power level applications. This paper provides a critical comparison of IPT and CPT for small gap applications, wherein the theoretical and empirical limitations of each approach are established. A survey of empirical WPT data across diverse applications in the last decade using IPT and CPT technology graphically compares the two approaches in power level, gap distance, operational frequency, and efficiency, among other aspects. The coupler volumetric power density constrained to small gap sizes is analytically established through theoretical physical limitations of IPT and CPT. Finally, guidelines for selecting IPT or CPT in small gap systems are presented.

411 citations