scispace - formally typeset
Search or ask a question
Author

Wang Zhang Yuan

Bio: Wang Zhang Yuan is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Phosphorescence & Membrane. The author has an hindex of 46, co-authored 149 publications receiving 9201 citations. Previous affiliations of Wang Zhang Yuan include University of Hong Kong & Zhejiang University.


Papers
More filters
Journal ArticleDOI
TL;DR: A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores, in the work reported here, which has developed a new approach.
Abstract: The development of efficient luminescent materials in the solid state is of both scientific and technological interest. An obstacle to their development is the notorious aggregation-caused quenching (ACQ) effect: the emission of conventional luminophores is often weakened in the solid state in comparison to in solution, due to aggregate formation in the condensed phase. [1‐3] The ACQ problem must be properly tackled, because the luminophores are commonly used as solid films in their practical applications. Various chemical, physical, and engineering approaches have been taken to frustrate luminophore aggregation. [4,5] The attachment of bulky alicyclics, encapsulation by amphiphilic surfactants, and blending with transparent polymers are widely used methods to impede aggregate formation. These processes, however, are often accompanied by severe side effects. The steric effects of bulky alicyclics, for example, can twist the conformations of the chromophoric units and jeopardize the electronic conjugation in the luminophores, and the electronic effects of the saturated surfactants and nonconjugated polymers can dilute the luminophore density and obstruct the charge transport in electroluminescence (EL) devices. The current approaches to the problem are thus far from ideal, because the ACQ effect is alleviated at the expense of other useful properties of the luminophores. A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores. In the work reported here, we have developed such a new approach. Triphenylamine (TPA) and its derivatives are luminescent when dissolved in good solvents [6] for them but become less emissive when aggregated in the solid state, and are therefore typical ACQ luminophores. [7] For

794 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported efficient phosphorescence from the crystals of benzophenone and its derivatives with a general formula of (X-C6H4)2C═O (X = F, Cl, Br) as well as methyl 4-bromobenzoate and 4,4′-dibromobiphenyl under ambient conditions.
Abstract: Phosphorescence has rarely been observed in pure organic chromophore systems at room temperature. We herein report efficient phosphorescence from the crystals of benzophenone and its derivatives with a general formula of (X-C6H4)2C═O (X = F, Cl, Br) as well as methyl 4-bromobenzoate and 4,4′-dibromobiphenyl under ambient conditions. These luminogens are all nonemissive when they are dissolved in good solvents, adsorbed on TLC plates, and doped into polymer films, because active intramolecular motions such as rotations and vibrations under these conditions effectively annihilate their triplet excitons via nonradiative relaxation channels. In the crystalline state, the intramolecular motions are restricted by the crystal lattices and intermolecular interactions, particularly C−H···O, N−H···O, C−H···X (X = F, Cl, Br), C−Br···Br−C, and C−H···π hydrogen bonding. The physical constraints and multiple intermolecular interactions collectively lock the conformations of the luminogen molecules. This structural rigi...

656 citations

Journal ArticleDOI
TL;DR: The AIE‐active fluorogen‐loaded BSA NPs show an excellent cancer cell uptake and a prominent tumor‐targeting ability in vivo due to the enhanced permeability and retention effect.
Abstract: Light emission of 2-(2,6-bis((E)-4-(diphenylamino)styryl)-4H-pyran-4-ylidene)malononitrile (TPA-DCM) is weakened by aggregate formation. Attaching tetraphenylethene (TPE) units as terminals to TPA-DCM dramatically changes its emission behavior: the resulting fluorogen, 2-(2,6-bis((E)-4-(phenyl(4′-(1,2,2-triphenylvinyl)-[1,1′-biphenyl]-4-yl)amino)styryl)-4H-pyran-4-ylidene)malononitrile (TPE-TPA-DCM), is more emissive in the aggregate state, showing the novel phenomenon of aggregation-induced emission (AIE). Formulation of TPE-TPA-DCM using bovine serum albumin (BSA) as the polymer matrix yields uniformly sized protein nanoparticles (NPs) with high brightness and low cytotoxicity. Applications of the fluorogen-loaded BSA NPs for in vitro and in vivo far-red/near-infrared (FR/NIR) bioimaging are successfully demonstrated using MCF-7 breast-cancer cells and a murine hepatoma-22 (H22)-tumor-bearing mouse model, respectively. The AIE-active fluorogen-loaded BSA NPs show an excellent cancer cell uptake and a prominent tumor-targeting ability in vivo due to the enhanced permeability and retention effect.

603 citations

Journal ArticleDOI
TL;DR: Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV).
Abstract: Aggregation-induced emission (AIE) has been harnessed in many systems through the principle of restriction of intramolecular rotations (RIR) based on mechanistic understanding from archetypal AIE molecules such as tetraphenylethene (TPE). However, as the family of AIE-active molecules grows, the RIR model cannot fully explain some AIE phenomena. Here, we report a broadening of the AIE mechanism through analysis of 10,10',11,11'-tetrahydro-5,5'-bidibenzo[a,d][7]annulenylidene (THBDBA), and 5,5'-bidibenzo[a,d][7]annulenylidene (BDBA). Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV). A more generalized mechanistic understanding of AIE results by combining RIR and RIV into the principle of restriction of intramolecular motions (RIM).

498 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the triphenylamine (TPA) and 2,3,3-triphenylacrylonitrile (TPAN) based EEM architectures, namely, TPA3TPAN and DTPA4TPAN.
Abstract: Emissive electron donor–acceptor (D–A) conjugates have a wide variety of applications in biophotonics, two-photon absorption materials, organic lasers, long wavelength emitters, and so forth. However, it is still a challenge to synthesize high solid-state efficiency D–A structured emitters due to the notorious aggregation-caused quenching (ACQ) effect. Though some D–A systems are reported to show aggregation-induced emission (AIE) behaviors, most are only selectively AIE-active in highly polar solvents, showing decreased solid-sate emission efficiencies compared to those in nonpolar solvents. Here we report the triphenylamine (TPA) and 2,3,3-triphenylacrylonitrile (TPAN) based D–A architectures, namely, TPA3TPAN and DTPA4TPAN. Decoration of arylamines with TPAN changes their emission behaviors from ACQ to AIE, making resulting TPA3TPAN and DTPA4TPAN nonluminescent in common solvents but highly emissive when aggregated as nanoparticles, solid powders, and thin films owing to their highly twisted configurat...

451 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations

Journal ArticleDOI
TL;DR: The restriction of intramolecular rotation is identified as a main cause for the AIE effect and a series of new fluorescent and phosphorescent AIE systems with emission colours covering the entire visible spectral region and luminescence quantum yields up to unity are developed.

3,324 citations