scispace - formally typeset
Search or ask a question
Author

Wangquan Ji

Bio: Wangquan Ji is an academic researcher from Zhengzhou University. The author has contributed to research in topics: Medicine & Pathogenesis. The author has an hindex of 2, co-authored 7 publications receiving 831 citations.

Papers
More filters
Journal ArticleDOI
27 Mar 2020-Viruses
TL;DR: The present understanding of COVID-19 is detailed and the current state of development of measures are introduced in this review to provide a comprehensive summary to public health authorities and potential readers worldwide.
Abstract: The outbreak of emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China has been brought to global attention and declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Scientific advancements since the pandemic of severe acute respiratory syndrome (SARS) in 2002~2003 and Middle East respiratory syndrome (MERS) in 2012 have accelerated our understanding of the epidemiology and pathogenesis of SARS-CoV-2 and the development of therapeutics to treat viral infection. As no specific therapeutics and vaccines are available for disease control, the epidemic of COVID-19 is posing a great threat for global public health. To provide a comprehensive summary to public health authorities and potential readers worldwide, we detail the present understanding of COVID-19 and introduce the current state of development of measures in this review.

1,126 citations

Journal ArticleDOI
TL;DR: In this paper, the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during the outbreak of coronavirus disease 2019 (COVID-19) emphasizing the principal mediators and therapeutic implications.
Abstract: On 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.

239 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identified three CVA2 strains from hand, foot, and mouth disease (HFMD) infections and used the cell-adapted coxsackievirus (CV) A2 strain HN202009 to inoculate 5-day-old BALB/c mice intramuscularly.
Abstract: Coxsackievirus (CV) A2 has emerged as an important etiological agent in the pathogen spectrum of hand, foot, and mouth disease (HFMD). The symptoms of CVA2 infections are generally mild, but worsen rapidly in some people, posing a serious threat to children's health. However, compared with enterovirus 71 detected frequently in fatal cases, limited attention has been paid to CVA2 infections because of its benign clinical course. In the present study, we identified three CVA2 strains from HFMD infections and used the cell-adapted CVA2 strain HN202009 to inoculate 5-day-old BALB/c mice intramuscularly. These mice developed remarkably neurological symptoms such as ataxia, hind-limb paralysis, and death. Histopathological determination showed neuronophagia, pulmonary hemorrhage, myofiberlysis and viral myocarditis. Viral replication was detected in multiple organs and tissues, and CVA2 exhibited strong tropism to muscle tissue. The severity of illness was associated with abnormally high levels of inflammatory cytokines, including interleukin (IL)-6, IL-10, tumor necrosis factor α, and monocyte chemotactic protein 1, although the blockade of these proinflammatory cytokines had no obvious protection. We also tested whether an experimental formaldehyde-inactivated CVA2 vaccine could induce protective immune response in adult mice. The CVA2 antisera from the vaccinated mice were effective against CVA2 infection. Moreover, the inactivated CVA2 vaccine could successfully generate immune protection in neonatal mice. Our results indicated that the neonatal mouse model could be a useful tool to study CVA2 infection and to develop CVA2 vaccines.

10 citations

Journal ArticleDOI
TL;DR: In this article , the expression of ACE2 and ACE and activation of inflammatory signaling pathways in lung tissues were evaluated by immunofluorescence staining and Western blotting, and it was found that PM2.5 exposure increased ACE2 expression significantly elevated the levels of total proteins, total cells, and the concentrations of MCP-1, IL-1β in bronchoalveolar lavage fluid (BALF).

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage, and found that the permeability of lung microvascular was significantly increased after the infection.
Abstract: Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results, which reveal the early kinetics of Sars-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-Co V-2 neutralizing antibodies in people.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that first emerged in late 2019 is responsible for a pandemic of severe respiratory illness. People infected with this highly contagious virus can present with clinically inapparent, mild, or severe disease. Currently, the virus infection in individuals and at the population level is being monitored by PCR testing of symptomatic patients for the presence of viral RNA. There is an urgent need for SARS-CoV-2 serologic tests to identify all infected individuals, irrespective of clinical symptoms, to conduct surveillance and implement strategies to contain spread. As the receptor binding domain (RBD) of the spike protein is poorly conserved between SARS-CoVs and other pathogenic human coronaviruses, the RBD represents a promising antigen for detecting CoV-specific antibodies in people. Here we use a large panel of human sera (63 SARS-CoV-2 patients and 71 control subjects) and hyperimmune sera from animals exposed to zoonotic CoVs to evaluate RBD's performance as an antigen for reliable detection of SARS-CoV-2-specific antibodies. By day 9 after the onset of symptoms, the recombinant SARS-CoV-2 RBD antigen was highly sensitive (98%) and specific (100%) for antibodies induced by SARS-CoVs. We observed a strong correlation between levels of RBD binding antibodies and SARS-CoV-2 neutralizing antibodies in patients. Our results, which reveal the early kinetics of SARS-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-CoV-2 neutralizing antibodies in people.

733 citations

Journal ArticleDOI
TL;DR: Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.

482 citations

Journal ArticleDOI
TL;DR: Factors that might protect children include differences in innate and adaptive immunity, more frequent recurrent and concurrent infections, pre-existing immunity to coronaviruses, and differences in microbiota.
Abstract: In contrast to other respiratory viruses, children have less severe symptoms when infected with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we discuss proposed hypotheses for the age-related difference in severity of coronavirus disease 2019 (COVID-19).Factors proposed to explain the difference in severity of COVID-19 in children and adults include those that put adults at higher risk and those that protect children. The former include: (1) age-related increase in endothelial damage and changes in clotting function; (2) higher density, increased affinity and different distribution of angiotensin converting enzyme 2 receptors and transmembrane serine protease 2; (3) pre-existing coronavirus antibodies (including antibody-dependent enhancement) and T cells; (4) immunosenescence and inflammaging, including the effects of chronic cytomegalovirus infection; (5) a higher prevalence of comorbidities associated with severe COVID-19 and (6) lower levels of vitamin D. Factors that might protect children include: (1) differences in innate and adaptive immunity; (2) more frequent recurrent and concurrent infections; (3) pre-existing immunity to coronaviruses; (4) differences in microbiota; (5) higher levels of melatonin; (6) protective off-target effects of live vaccines and (7) lower intensity of exposure to SARS-CoV-2.

347 citations

Journal ArticleDOI
TL;DR: A review will be a summa of the key features of novel coronavirus (nCoV), the virus causing disease 2019 and the present epidemic situation worldwide up to April 20, 2020.

338 citations