scispace - formally typeset
Search or ask a question
Author

Wangwei Ju

Bio: Wangwei Ju is an academic researcher from Shanghai University. The author has contributed to research in topics: Regression analysis & Integrated computational materials engineering. The author has an hindex of 3, co-authored 3 publications receiving 818 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the typical mode of and basic procedures for applying machine learning in materials science are outlined and compared, and the current research status is reviewed with regard to applications of ML in material property prediction, in new materials discovery and for other purposes.

717 citations

Journal ArticleDOI
Yue Liu1, Tianlu Zhao1, Guang Yang1, Wangwei Ju1, Siqi Shi1 
TL;DR: In this article, topological and regression analysis (ridge regression, support vector regression and back-propagation neural network) methods are used to predict the onset temperature (Tg) of glass transition of each composition in the system for glass preparation and fiber processing.

40 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
08 Aug 2019
TL;DR: A comprehensive overview and analysis of the most recent research in machine learning principles, algorithms, descriptors, and databases in materials science, and proposes solutions and future research paths for various challenges in computational materials science.
Abstract: One of the most exciting tools that have entered the material science toolbox in recent years is machine learning. This collection of statistical methods has already proved to be capable of considerably speeding up both fundamental and applied research. At present, we are witnessing an explosion of works that develop and apply machine learning to solid-state systems. We provide a comprehensive overview and analysis of the most recent research in this topic. As a starting point, we introduce machine learning principles, algorithms, descriptors, and databases in materials science. We continue with the description of different machine learning approaches for the discovery of stable materials and the prediction of their crystal structure. Then we discuss research in numerous quantitative structure–property relationships and various approaches for the replacement of first-principle methods by machine learning. We review how active learning and surrogate-based optimization can be applied to improve the rational design process and related examples of applications. Two major questions are always the interpretability of and the physical understanding gained from machine learning models. We consider therefore the different facets of interpretability and their importance in materials science. Finally, we propose solutions and future research paths for various challenges in computational materials science.

1,301 citations

Journal ArticleDOI
26 Mar 2018
TL;DR: In this article, a review of state-of-the-art modeling progress in the investigation of solid electrolyte interphase (SEI) films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design.
Abstract: A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

897 citations

Journal ArticleDOI
TL;DR: In this paper, the typical mode of and basic procedures for applying machine learning in materials science are outlined and compared, and the current research status is reviewed with regard to applications of ML in material property prediction, in new materials discovery and for other purposes.

717 citations

Journal ArticleDOI
TL;DR: QuantumATK as discussed by the authors is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers, which enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations.
Abstract: QuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented,a#13; the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations. Density functional theory is implemented using either a plane-wave basis or expansion of electronic states in a linear combination of atomic orbitals. The platform includes a long list of advanced modules, including Green's-function methods for electron transport simulations and surface calculations, first-principles electron-phonon and electron-photon couplings,a#13; simulation of atomic-scale heat transport, ion dynamics, spintronics, optical properties of materials, static polarization, and more.a#13; Seamless integration of the different simulation engines into a common platform allows for easy combination of different simulation methods into complex workflows. Besides giving a general overview and presenting a number of implementation detailsa#13; not previously published, we also present four different application examples. These are calculations of the phonon-limited mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model simulation of lithium ion drift through a battery cathode in an external electric field, and electronic-structure calculations of the composition-dependent band gap of SiGe alloys.a#13;

658 citations